scholarly journals Amentadione from the Alga Cystoseira usneoides as a Novel Osteoarthritis Protective Agent in an Ex Vivo Co-Culture OA Model

Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 624 ◽  
Author(s):  
Nuna Araújo ◽  
Carla S. B. Viegas ◽  
Eva Zubía ◽  
Joana Magalhães ◽  
Acácio Ramos ◽  
...  

Osteoarthritis (OA) remains a prevalent chronic disease without effective prevention and treatment. Amentadione (YP), a meroditerpenoid purified from the alga Cystoseira usneoides, has demonstrated anti-inflammatory activity. Here, we investigated the YP anti-osteoarthritic potential, by using a novel OA preclinical drug development pipeline designed to evaluate the anti-inflammatory and anti-mineralizing activities of potential OA-protective compounds. The workflow was based on in vitro primary cell cultures followed by human cartilage explants assays and a new OA co-culture model, combining cartilage explants with synoviocytes under interleukin-1β (IL-1β) or hydroxyapatite (HAP) stimulation. A combination of gene expression analysis and measurement of inflammatory mediators showed that the proposed model mimicked early disease stages, while YP counteracted inflammatory responses by downregulation of COX-2 and IL-6, improved cartilage homeostasis by downregulation of MMP3 and the chondrocytes hypertrophic differentiation factors Col10 and Runx2. Importantly, YP downregulated NF-κB gene expression and decreased phosphorylated IkBα/total IkBα ratio in chondrocytes. These results indicate the co-culture as a relevant pre-clinical OA model, and strongly suggest YP as a cartilage protective factor by inhibiting inflammatory, mineralizing, catabolic and differentiation processes during OA development, through inhibition of NF-κB signaling pathways, with high therapeutic potential.

2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4210
Author(s):  
Yan Zhou ◽  
Chunxiu Zhou ◽  
Xutao Zhang ◽  
Chi Teng Vong ◽  
Yitao Wang ◽  
...  

Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2021 ◽  
Vol 22 (14) ◽  
pp. 7247
Author(s):  
Jana Riegger ◽  
Julia Baumert ◽  
Frank Zaucke ◽  
Rolf E. Brenner

The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, “fueling” the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.


2021 ◽  
Vol 22 (6) ◽  
pp. 3022
Author(s):  
Tatjana Ullmann ◽  
Sonja Luckhardt ◽  
Markus Wolf ◽  
Michael J. Parnham ◽  
Eduard Resch

This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1920 ◽  
Author(s):  
Carla Busquets-Cortés ◽  
Xavier Capó ◽  
Emma Argelich ◽  
Miguel Ferrer ◽  
David Mateos ◽  
...  

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) can exert opposed effects depending on the dosage: low levels can be involved in signalling and adaptive processes, while higher levels can exert deleterious effects in cells and tissues. Our aim was to emulate a chronic ex vivo oxidative stress situation through a 2 h exposure of immune cells to sustained H2O2 produced by glucose oxidase (GOX), at high or low production rate, in order to determine dissimilar responses of peripheral blood mononuclear cells (PBMCs) and neutrophils on ROS and cytokine production, and mitochondrial dynamics-related proteins, pro/anti-inflammatory and anti-oxidant gene expression. Immune cells were obtained from subjects with metabolic syndrome. H2O2 at low concentrations can trigger a transient anti-inflammatory adiponectin secretion and reduced gene expression of toll-like receptors (TLRs) in PBMCs but may act as a stimulator of proinflammatory genes (IL6, IL8) and mitochondrial dynamics-related proteins (Mtf2, NRF2, Tfam). H2O2 at a high concentration enhances the expression of pro-inflammatory genes (TLR2 and IL1β) and diminishes the expression of mitochondrial dynamics-related proteins (Mtf1, Tfam) and antioxidant enzymes (Cu/Zn SOD) in PBMCs. The GOX treatments produce dissimilar changes in immune cells: Neutrophils were more resistant to H2O2 effects and exhibited a more constant response in terms of gene expression than PBMCs. We observe emerging roles of H2O2 in mitochondrial dynamics and redox and inflammation processes in immune cells.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Nikunj Satani ◽  
Kaavya Giridhar ◽  
Natalia Wewior ◽  
Dominique D Norris ◽  
Scott D Olson ◽  
...  

Background: Inflammatory responses after stroke consists of central and peripheral immune responses. The role of the spleen after stroke is well-known, however the role of the lungs has not been studied in detail. We explored the relation between stroke severity and immunomodulatory changes in lung endothelial cells. Methods: Human pulmonary endothelial cells (hPECs, Cell Biologics) were cultured at passage 3. Serum from stroke patients with NIH Stroke Scale (NIHSS) severity ranging from 0 to 20 was collected at 24 hours after stroke. hPECs were exposed to media with 1) 10% FBS alone (N=6), 2) 10% serum from stroke patients (N=72), or 3) 10% serum from stroke mimic patients (N=6). After 3 hour of exposure, fresh media was added and secretomes from hPECs were measured after 24 hours. We isolated RNA from hPECs after 3 hour of serum exposure and measured gene expression (N=6 for each group). Secretome and gene changes in hPECs were analyzed based on stroke severity, tPA treatment, and co-morbidities. Results: Serum from stroke patients reduced the secretion of IL-8, MCP-1 and Fractalkine (p<0.01), and increased the secretion of VEGF and BDNF (p<0.01) from hPECs. These effects were more pronounced depending on stroke severity (Fig). There was no effect of tPA or T2DM on hPECs secretomes. There was significantly reduced gene expression of IL-6, IL-8, MCP-1 and IL-1β and significantly higher expression of ICAM1, IGF-1 and TGF-β1 as compared to stroke mimics. Conclusion: Exposure of hPECs to serum from stroke patients alters their immunomodulatory properties. Higher severity of stroke leads to more protective response from hPECs by reducing the secretion of pro-inflammatory factors, while increasing the secretion of anti-inflammatory factors.


2019 ◽  
Vol 133 (4) ◽  
pp. 551-564 ◽  
Author(s):  
Xuhua Yu ◽  
Huei Jiunn Seow ◽  
Hao Wang ◽  
Desiree Anthony ◽  
Steven Bozinovski ◽  
...  

AbstractChronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and will become the third largest cause of death in the world by 2030. It is well established that an exaggerated inflammatory and oxidative stress response to cigarette smoke (CS) leads to, emphysema, small airway fibrosis, mucus hypersecretion, and progressive airflow limitation. Current treatments have limited efficacy in inhibiting chronic inflammation and consequently do not reverse the pathology that initiates and drives the long-term progression of disease. In particular, there are no effective therapeutics that target neutrophilic inflammation in COPD, which is known to cause tissue damage by degranulation of a suite of proteolytic enzymes including neutrophil elastase (NE). Matrine, an alkaloid compound extracted from Sophora flavescens Ait, has well known anti-inflammatory activity. Therefore, the aim of the present study was to investigate whether matrine could inhibit CS-induced lung inflammation in mice. Matrine significantly reduced CS-induced bronchoalveolar lavage fluid (BALF) neutrophilia and NE activity in mice. The reduction in BALF neutrophils in CS-exposed mice by matrine was not due to reductions in pro-neutrophil cytokines/chemokines, but rather matrine’s ability to cause apoptosis of neutrophils, which we demonstrated ex vivo. Thus, our data suggest that matrine has anti-inflammatory actions that could be of therapeutic potential in treating CS-induced lung inflammation observed in COPD.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 17-19
Author(s):  
Shuhui Li

Abstract Lipocalin 2 (Lcn2) is an essential component of the innate immune system and exerts significant immunomodulatory effects in vitro. The aim of current study was to investigate the expression profile of Lcn2 during inflammatory process and explore the role of Lcn2 in the anti-inflammatory responses. Western blot, real-time quantitative PCR, immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) were employed. Firstly, we evaluated the temporospatial expression of Lcn2 of mice after inflammatory stimuli by lipopolysaccharides (LPS). In vivo, LPS induced both mRNA and protein levels of Lcn2 significantly (P &lt; 0.01) in liver, jejunum and ileum. Lcn2 exhibited a continuous increase by 8 h and peaked by 24 h post challenges. Secondly, we challenged Lcn2-deficient (Lcn2-/-) mice and wild-type (WT) mice with peripheral LPS and determined effects on inflammation. In contrast to WT mice, Lcn2-/- mice showed distinct inflammatory injury in liver, jejunum, ileum and spleen with significantly elevated pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-1b (IL-1b) and decreased anti-inflammatory cytokine interleukin-10 (IL-10). Thirdly, we isolated bone marrow-derived macrophages (BMDM) from Lcn2-/- mice and WT mice to evaluate their functions. After LPS challenge, Lcn2-/- BMDM showed aggravated inflammatory reaction as pro-inflammatory factors tumour necrosis factor-α (TNF-α), IL-6, IL-1b and inducible nitric oxide synthase (iNOS) increased (P &lt; 0.05) while anti-inflammatory cytokines IL-10, transforming growth factor β1 (TGF-β1) and arginase-1(Arg-1) decreased significantly (P &lt; 0.05) compared with WT BMDM. This phenomenon could be relieved when adding recombinant Lcn2 (P &lt; 0.05). The exogenous addition of Lcn2 on mice RAW264.7 macrophages stimulated by LPS also conformed this point. These findings demonstrated that Lcn2 served as a potent protective factor in response to systemic inflammation, and elevated Lcn2 expression during inflammatory conditions was presumed to play an effective role in alleviating inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document