scholarly journals Evidence on the Bioaccessibility of Glucosinolates and Breakdown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion

2021 ◽  
Vol 22 (20) ◽  
pp. 11046
Author(s):  
Ángel Abellán ◽  
Raúl Domínguez-Perles ◽  
Cristina García-Viguera ◽  
Diego A. Moreno

Cruciferous vegetables are gaining importance as nutritious and sustainable foods, rich in phytochemical compounds such as glucosinolates (GSLs). However, the breakdown products of these sulfur-based compounds, mainly represented by isothiocyanates (ITC) and indoles, can contribute to human health. In the human digestive system, the formation of these compounds continues to varying extents in the different stages of digestion, due to the contact of GSLs with different gastric fluids and enzymes under the physicochemical conditions of the gastrointestinal tract. Therefore, the aim of the present work was to uncover the effect of gastrointestinal digestion on the release of glucosinolates and their transformation into their bioactive counterparts by applying a simulated in vitro static model on a range of brassica (red radish, red cabbage, broccoli, and mustard) sprouts. In this sense, significantly higher bioaccessibility of ITC and indoles from GSLs of red cabbage sprouts was observed in comparison with broccoli, red radish, and mustard sprouts, due to the aliphatic GSLs proportion present in the different sprouts. This indicates that the bioaccessibility of GSLs from Brasicaceae sprouts is not exclusively associated with the initial content of these compounds in the plant material (almost negligible), but also with the release of GSLs and the ongoing breakdown reactions during the gastric and intestinal phases of digestion, respectively. Additionally, aliphatic GSLs provided higher bioaccessibility of their corresponding ITC in comparison to indolic and aromatic GSLs.

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4140
Author(s):  
Ángel Abellán ◽  
Raúl Domínguez-Perles ◽  
Cristina García-Viguera ◽  
Diego A. Moreno

Cruciferous sprouts are rising in popularity as a hallmark of healthy diets, partially because of their phytochemical composition, characterized by the presence of flavonols and cinnamates. However, to shed light on their biological activity, the ability to assimilate (poly)phenols from sprouts (bioaccessible fraction) during gastrointestinal digestion needs to be studied. In this frame, the present work studies the effect of the physicochemical and enzymatic characteristics of gastrointestinal digestion on flavonols and cinnamoyl derivatives, by a simulated static in vitro model, on different cruciferous (red radish, red cabbage, broccoli, and white mustard) sprouts. The results indicate that, although the initial concentrations of phenolic acids in red radish (64.25 mg/g fresh weight (fw)) are lower than in the other sprouts studied, their bioaccessibility after digestion is higher (90.40 mg/g fw), followed by red cabbage (72.52 mg/g fw), white mustard (58.72 mg/g fw), and broccoli (35.59 mg/g fw). These results indicate that the bioaccessibility of (poly)phenols is not exclusively associated with the initial concentration in the raw material, but that the physico-chemical properties of the food matrix, the presence of other additional molecules, and the specific characteristics of digestion are relevant factors in their assimilation.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 955 ◽  
Author(s):  
Luana Izzo ◽  
Yelko Rodríguez-Carrasco ◽  
Severina Pacifico ◽  
Luigi Castaldo ◽  
Alfonso Narváez ◽  
...  

Red cabbage is a native vegetable of the Mediterranean region that represents one of the major sources of anthocyanins. The aim of this research is to evaluate the antioxidant capability and total polyphenol content (TPC) of a red cabbage extract and to compare acquired data with those from the same extract encapsulated in an acid-resistant capsule. The extract, which was qualitatively and quantitatively profiled by UHPLC-Q-Orbitrap HRMS analysis, contained a high content of anthocyanins and phenolic acids, whereas non-anthocyanin flavonoids were the less abundant compounds. An in vitro gastrointestinal digestion system was utilized to follow the extract’s metabolism in humans and to evaluate its colon bioaccessibility. Data obtained showed that during gastrointestinal digestion, the total polyphenol content of the extract digested in the acid-resistant capsule in the Pronase E stage resulted in a higher concentration value compared to the extract digested without the capsule. Reasonably, these results could be attributed to the metabolization process by human colonic microflora and to the genesis of metabolites with greater bioactivity and more beneficial effects. The use of red cabbage extract encapsulated in an acid-resistant capsule could improve the polyphenols’ bioaccessibility and be proposed as a red cabbage-based nutraceutical formulation for counteracting stress oxidative diseases.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1995
Author(s):  
Xochitl Cruz Sollano-Mendieta ◽  
Ofelia Gabriela Meza-Márquez ◽  
Guillermo Osorio-Revilla ◽  
Darío Iker Téllez-Medina

Spondias purpurea L. plum is a source of antioxidant compounds. Nevertheless, once they are consumed and go through the digestive system, these compounds may undergo changes that modify their bioaccessibility. This study aimed to evaluate the effect of in vitro gastrointestinal digestion on the total content of carotenoids (TCC), ascorbic acid (AA), phenolic compounds (TPC), flavonoids (TFC), anthocyanins (TAC), and antioxidant capacity (ABTS, DPPH) of 12 plum Spondias purpurea L. ecotypes. The plum samples were subjected to the InfoGest in vitro digestion model. TCC, AA, TPC, TFC, TAC, ABTS, and DPPH were significantly different (p ≤ 0.05) in each in vitro digestion stage. The gastric stage released the highest content of AA (64.04–78.66%) and TAC (128.45–280.50%), whereas the intestinal stage released the highest content of TCC (11.31–34.20%), TPC (68.61–95.36%), and TFC (72.76–95.57%). Carotenoids were not identified in the gastric stage whilst anthocyanins were lost at the end of the intestinal digestion. At the gastric stage, AA presented a positive and high correlation with ABTS (r: 0.83) and DPPH (r: 0.84), while, in the intestinal stage, TPC and TFC presented positive and high correlation with ABTS (r ≥ 0.8) and DPPH (r ≥ 0.8), respectively.


2019 ◽  
Vol 20 (23) ◽  
pp. 5890 ◽  
Author(s):  
Chan-Su Rha ◽  
Hyunbin Seong ◽  
Young Sung Jung ◽  
Davin Jang ◽  
Jun-Gu Kwak ◽  
...  

Flavonols, the second most abundant flavonoids in green tea, exist mainly in the form of glycosides. Flavonols are known to have a variety of beneficial health effects; however, limited information is available on their fate in the digestive system. We investigated the digestive stability of flavonol aglycones and glycosides from green tea under simulated digestion and anaerobic human fecal fermentation. Green tea fractions rich in flavonol glycosides and aglycones, termed flavonol-glycoside-rich fraction (FLG) and flavonol-aglycone-rich fraction (FLA) hereafter, were obtained after treatment with cellulase and tannase, respectively. Kaempferol and its glycosides were found to be more stable in simulated gastric and intestinal fluids than the derivatives of quercetin and myricetin. Anaerobic human fecal fermentation with FLG and FLA increased the populations of Lactobacilli spp. and Bifidobacteria spp. and generated various organic acids, such as acetate, butyrate, propionate, and lactate, among which butyrate was produced in the highest amount. Our findings indicate that some stable polyphenols have higher bioaccessibilities in the gastrointestinal tract and that their health-modulating effects result from their interactions with microbes in the gut.


Beverages ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Adriana Farah ◽  
Juliana dePaula Lima

Chlorogenic acids (CGA) are the main antioxidant compounds in the Western diet, due to their high concentrations in coffee associated with the high consumption of the beverage. Until about 10 years ago, like many other phenolic compounds, CGA were thought to be poorly absorbed in the human digestive system. Along the years, large amounts of information on the absorption and metabolism of these compounds have been unveiled, and today, it is known that, on average, about one third of the consumed CGA from coffee is absorbed in the human gastrointestinal tract, although large inter-individual variation exists. Considering results from in vitro animal and human studies, it is possible to conclude that the antioxidant and anti-inflammatory effects of coffee CGA are responsible for, at least to a certain extent, the association between coffee consumption and lower incidence of various degenerative and non-degenerative diseases, in addition to higher longevity.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Podsędek ◽  
Małgorzata Redzynia ◽  
Elżbieta Klewicka ◽  
Maria Koziołkiewicz

Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mohamad Zahid Kasiram ◽  
Hermizi Hapidin ◽  
Hasmah Abdullah ◽  
Azlina Ahmad ◽  
Sarina Sulong

Background: Osteosarcoma is the most common type of primary bone tumor in children and adolescents, which is associated with rapid progression and poor prognosis. Multimodal therapy is the most common approach utilized for osteosarcoma management, such as the application of chemotherapy in combination with surgery or radiation therapy. Cisplatin is one of the predominantly used chemotherapeutic agents for osteosarcoma. Optimally, it is employed in combination with other chemotherapeutic drugs along with surgery or radiation therapy. Despite the availability of numerous treatment approaches, patient survival rate has not definitively improved over the past three decades. Methods: We summarized all findings regarding the combination of cisplatin with other chemotherapeutic agents as well as with phytochemical compounds. Results: A combination of cisplatin with phytochemical compound synergistically enhances the killing effect of cisplatin on osteosarcoma cells with fewer side effects compared to combination with other chemotherapeutic agents. Conclusion: Conclusively, a combination of cisplatin with selected chemotherapeutic drugs, has been shown to be effective. However, the unchanged survival rate urges for the search of a new combination regimen. As a collaborative effort to substantiate the therapeutic efficacy, the combination with phytochemical compounds shows a promising response both in vitro as well as in the preclinical study.


Sign in / Sign up

Export Citation Format

Share Document