scholarly journals Particulate Matter (PM10) Promotes Cell Invasion through Epithelial–Mesenchymal Transition (EMT) by TGF-β Activation in A549 Lung Cells

2021 ◽  
Vol 22 (23) ◽  
pp. 12632
Author(s):  
Claudia M. García-Cuellar ◽  
Miguel Santibáñez-Andrade ◽  
Yolanda I. Chirino ◽  
Raúl Quintana-Belmares ◽  
Rocío Morales-Bárcenas ◽  
...  

Air pollution presents a major environmental problem, inducing harmful effects on human health. Particulate matter of 10 μm or less in diameter (PM10) is considered an important risk factor in lung carcinogenesis. Epithelial–mesenchymal transition (EMT) is a regulatory program capable of inducing invasion and metastasis in cancer. In this study, we demonstrated that PM10 treatment induced phosphorylation of SMAD2/3 and upregulation of SMAD4. We also reported that PM10 increased the expression and protein levels of TGFB1 (TGF-β), as well as EMT markers SNAI1 (Snail), SNAI2 (Slug), ZEB1 (ZEB1), CDH2 (N-cadherin), ACTA2 (α-SMA), and VIM (vimentin) in the lung A549 cell line. Cell exposed to PM10 also showed a decrease in the expression of CDH1 (E-cadherin). We also demonstrated that expression levels of these EMT markers were reduced when cells are transfected with small interfering RNAs (siRNAs) against TGFB1. Interestingly, phosphorylation of SMAD2/3 and upregulation of SMAD induced by PM10 were not affected by transfection of TGFB1 siRNAs. Finally, cells treated with PM10 exhibited an increase in the capacity of invasiveness because of EMT induction. Our results provide new evidence regarding the effect of PM10 in EMT and the acquisition of an invasive phenotype, a hallmark necessary for lung cancer progression.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3529-3529 ◽  
Author(s):  
Kanwal Pratap Singh Raghav ◽  
Hesham M. Amin ◽  
Wenting Wang ◽  
Ganiraju C. Manyam ◽  
Bradley Broom ◽  
...  

3529 Background: Epithelial-mesenchymal transition (EMT) has been identified as a dominant molecular subtype of colorectal cancer (CRC). This EMT phenotype as recognized by complex gene signatures is prognostic and associated with chemoresistance, but a biomarker for EMT suitable for clinical utilization has not yet been validated. The purpose of this study was to compare MET protein expression with protein/gene expression of EMT markers and to evaluate its impact on overall survival (OS). Methods: We performed an exploratory analysis of 139 untreated primary CRC samples using data from The Cancer Genome Atlas. Protein and gene expressions were measured using reverse-phase protein array (RPPA) and RNA-sequencing, respectively. MET high/overexpressed group was defined by protein level in the highest quartile. Mann-Whitney U-test and Spearman rank correlation was used to determine association between MET protein expression and protein/gene expression of EMT markers and EMT gene signature scores. Regression tree method and Kaplan-Meier estimates were used to assess overall survival (OS). Results: The MET protein distribution is right skewed, demonstrating a unique population of MET high expressing tumors (P < 0.01). Colon tumors had higher MET protein levels compared to rectal tumors (P < 0.01). MET overexpression was associated with decreased OS (HR 2.92; 95% CI: 1.45 - 5.92). MET protein expression correlated strongly with protein expressions of SLUG (transcription factor for EMT) (r = 0.6) and ERCC1 (a marker for oxaliplatin chemo-resistance) (r = 0.6) (P < 0.01). Higher MET protein levels were associated with higher gene expression of 28 EMT markers including AXL, VIM, ZEB1, ZEB2, FGF1, TGFB1I1 and MMP11 (P < 0.05). Higher MET protein levels were also associated with higher gene scores derived from three published EMT gene signatures (P < 0.05). MET protein expression did not correlate with MET gene expression (r = 0.16). Conclusions: Increased MET protein expression strongly correlates with a molecular EMT phenotype and poor survival in patients with CRC. MET protein expression may be used as a surrogate biomarker to represent and select for this unique molecular subset of CRC driven by EMT biology.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1674
Author(s):  
Hyun Ji Kim ◽  
Mi Kyung Park ◽  
Hyun Jung Byun ◽  
Minkyoung Kim ◽  
Boram Kim ◽  
...  

LW1497 suppresses the expression of the hypoxia-inducing factor (HIF)-1α inhibiting malate dehydrogenase. Although hypoxia and HIF-1α are known to be important in cancer, LW1497 has not been therapeutically applied to cancer yet. Thus, we investigated the effect of LW1497 on the epithelial-mesenchymal transition (EMT) of lung cancer cells. A549 and H1299 lung cancer cells were induced to undergo via TGF-β1 treatment, resulting in the downregulation of E-cadherin and upregulation of N-cadherin and Vimentin concurrently with increases in the migration and invasion capacities of the cells. These effects of TGF-β1 were suppressed upon co-treatment of the cells with LW1497. An RNA-seq analysis revealed that LW1497 induced differential expression of genes related to hypoxia, RNA splicing, angiogenesis, cell migration, and metastasis in the A549 lung cancer cell lines. We confirmed the differential expression of Slug, an EMT-related transcription factor. Results from Western blotting and RT-PCR confirmed that LW1497 inhibited the expression of EMT markers and Slug. After orthotopically transplanting A549 cancer cells into mice, LW1497 was administered to examine whether the lung cancer progression was inhibited. We observed that LW1497 reduced the area of cancer. In addition, the results from immunohistochemical analyses showed that LW1497 downregulated EMT markers and Slug. In conclusion, LW1497 suppresses cancer progression through the inhibition of EMT by downregulating Slug.


2020 ◽  
Author(s):  
Naghmeh Ahmadiankia ◽  
Maryam Yarmohammadi ◽  
Azam Hadi ◽  
Behnaz Jafari ◽  
Mozhgan Fazli ◽  
...  

The theory of platelet role in cancer progression was recently introduced. We investigated the association of extravasated platelets in colorectal cancer with clinicopathological features, and also the expression of epithelial-mesenchymal transition (EMT) markers. We retrospectively analyzed data from 33 patients with colorectal cancer who underwent surgery between 2013-2016. In formalin-fixed paraffin-embedded tissues, we evaluated the expression of a platelet-specific marker of CD42b and EMT markers using immunohistochemistry. The associations among the expression of the platelet‑specific marker in specimens, EMT, and clinicopathological futures were analyzed. The presence of platelets was observed in 15 out of 33 primary colorectal tumors (45%). According to multivariate analysis, CD42b expression was not correlated with clinical characteristics. Platelet-positive tumor cells did not show EMT marker expression. These data suggest that extravasated platelets may not have a central role in determining patient characteristics and clinical futures.


Author(s):  
Soorya P. Illam ◽  
Arunaksharan Narayanankutty ◽  
Shaji E. Mathew ◽  
Remya Valsalakumari ◽  
Rosemol M. Jacob ◽  
...  

Oncogenesis ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Kaname Sakamoto ◽  
Kaori Endo ◽  
Kei Sakamoto ◽  
Kou Kayamori ◽  
Shogo Ehata ◽  
...  

AbstractETS homologous factor (EHF) belongs to the epithelium-specific subfamily of the E26 transformation-specific (ETS) transcription factor family. Currently, little is known about EHF’s function in cancer. We previously reported that ETS1 induces expression of the ZEB family proteins ZEB1/δEF1 and ZEB2/SIP1, which are key regulators of the epithelial–mesenchymal transition (EMT), by activating the ZEB1 promoters. We have found that EHF gene produces two transcript variants, namely a long form variant that includes exon 1 (EHF-LF) and a short form variant that excludes exon 1 (EHF-SF). Only EHF-SF abrogates ETS1-mediated activation of the ZEB1 promoter by promoting degradation of ETS1 proteins, thereby inhibiting the EMT phenotypes of cancer cells. Most importantly, we identified a novel point mutation within the conserved ETS domain of EHF, and found that EHF mutations abolish its original function while causing the EHF protein to act as a potential dominant negative, thereby enhancing metastasis in vivo. Therefore, we suggest that EHF acts as an anti-EMT factor by inhibiting the expression of ZEBs, and that EHF mutations exacerbate cancer progression.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yoshinobu Kariya ◽  
Midori Oyama ◽  
Takato Suzuki ◽  
Yukiko Kariya

AbstractEpithelial–mesenchymal transition (EMT) plays a pivotal role for tumor progression. Recent studies have revealed the existence of distinct intermediate states in EMT (partial EMT); however, the mechanisms underlying partial EMT are not fully understood. Here, we demonstrate that αvβ3 integrin induces partial EMT, which is characterized by acquiring mesenchymal phenotypes while retaining epithelial markers. We found αvβ3 integrin to be associated with poor survival in patients with lung adenocarcinoma. Moreover, αvβ3 integrin-induced partial EMT promoted migration, invasion, tumorigenesis, stemness, and metastasis of lung cancer cells in a TGF-β-independent fashion. Additionally, TGF-β1 promoted EMT progression synergistically with αvβ3 integrin, while a TGF-β signaling inhibitor showed no effect on αvβ3 integrin-induced partial EMT. Meanwhile, the microRNA-200 family abolished the αvβ3 integrin-induced partial EMT by suppressing αvβ3 integrin cell surface expression. These findings indicate that αvβ3 integrin is a key inducer of partial EMT, and highlight a new mechanism for cancer progression.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-96
Author(s):  
T. Jeethy Ram ◽  
Asha Lekshmi ◽  
Thara Somanathan ◽  
K. Sujathan

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


Sign in / Sign up

Export Citation Format

Share Document