scholarly journals Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses

2021 ◽  
Vol 22 (24) ◽  
pp. 13383
Author(s):  
Tushar Kanti Das ◽  
Albert Poater

The toxicity and persistence of heavy metals has become a serious problem for humans. These heavy metals accumulate mainly in wastewater from various industries’ discharged effluents. The recent trends in research are now focused not only on the removal efficiency of toxic metal particles, but also on their effective reuse as catalysts. This review discusses the types of heavy metals obtained from wastewater and their recovery through commonly practiced physico-chemical pathways. In addition, it covers the advantages of the new system for capturing heavy metals from wastewater, as compared to older conventional technologies. The discussion also includes the various structural aspects of trapping systems and their hypothesized mechanistic approaches to immobilization and further rejuvenation of catalysts. Finally, it concludes with the challenges and future prospects of this research to help protect the ecosystem.

2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


2022 ◽  
Vol 45 ◽  
pp. 102481
Author(s):  
Mariana Mariana ◽  
Abdul Khalil H.P.S. ◽  
Esam Bashir Yahya ◽  
N.G. Olaiya ◽  
Tata Alfatah ◽  
...  

Author(s):  
Pedro Alexandre Sodrzeieski ◽  
Leonardo Capeleto de Andrade ◽  
Tales Tiecher ◽  
Flávio Anastácio de Oliveira Camargo

Dilúvio Stream flows through an area with a great population density in Porto Alegre, Southern Brazil. The anthropogenic influence in the surroundings impacted negatively the quality of the sediments of Dilúvio Stream and Lake Guaíba. This study evaluated the physico-chemical variability of surface sediments in a non-channeled section of Dilúvio Stream. Additionally, we compared the concentration of several heavy metals in this section with data from previous studies in the margins of Lake Guaíba near the outflow of Dilúvio Stream in order to evaluate the impact of urbanization on sediment pollution. The pH, bulk density, particle-size distribution, electrical conductivity, organic carbon, assimilable phosphorus, total nitrogen, mineralogical composition (X-ray diffractogram) and pseudo total concentration of several metals (Fe, Al, Ca, Mg, Na, K, Mn, Ba, Zn, V, As, Pb, Cu, Cr, Co, Ni, Cd, Mo, and Se) were evaluated. The results showed that the sediments in the non-channeled section of Dilúvio Stream are predominantly sandy, with heavy metal contents below the quality reference values. Quartz and feldspar predominated in all sites. The concentration of Zn, Pb, Cu, Cr, and Ni were lower than that observed in the margins of Lake Guaíba near the outflow of Dilúvio Stream, possibly due to pollution input throughout the channeled section. The Dilúvio Stream shows indications of an anthropogenic influence in the heavy metals concentration through the channeled area.


2021 ◽  
Vol 904 (1) ◽  
pp. 012009
Author(s):  
A W Abd Byty ◽  
M A Gharbi ◽  
A H Assaf

Abstract Toxic metal pollutants in groundwater should be identified to prevent future health risks. In this paper, the presence of heavy metals in groundwater in the western region of Iraq was investigated. The heavy metals concentrations, including Ni2+, Co2+, Zn2+, Pb2+, Cr3+, Cd2+, As3+ and Hg2+ were explored in twenty selected aquifers near Rutba City and the results were presented as spatial distribution maps. Findings indicate that contamination with the investigated heavy metal ions possesses a serious threat to the study area’s groundwater quality when compared to WHO and IEPA guideline values. Thus, a new approach to remove or adsorb heavy metal ions can be developed for large-scale production and the safe use of these aquifers water. Results revealed that the highest concentrations in mg/L1 of 2.312 in w19, 1.098 in w2, 5.78 in w17, 0.292 in w9, 3.349 in w5, 0.32 in w13, 0.074 in w11 and 5.622 in w1 for Zn2+, Cr3+, As3+, Pb2+, Ni2+, Co2+, Cd2+ and Hg2+ were recorded, respectively.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2659
Author(s):  
Muhammad Zaim Anaqi Zaimee ◽  
Mohd Sani Sarjadi ◽  
Md Lutfor Rahman

Natural occurrence and anthropogenic practices contribute to the release of pollutants, specifically heavy metals, in water over the years. Therefore, this leads to a demand of proper water treatment to minimize the harmful effects of the toxic heavy metals in water, so that a supply of clean water can be distributed into the environment or household. This review highlights several water treatment methods that can be used in removing heavy metal from water. Among various treatment methods, the adsorption process is considered as one of the highly effective treatments of heavy metals and the functionalization of adsorbents can fully enhance the adsorption process. Therefore, four classes of adsorbent sources are highlighted: polymeric, natural mineral, industrial by-product, and carbon nanomaterial adsorbent. The major purpose of this review is to gather up-to-date information on research and development on various adsorbents in the treatment of heavy metal from water by emphasizing the adsorption capability, effect of pH, isotherm and kinetic model, removal efficiency and the contact of time of every adsorbent.


2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2020 ◽  
Vol 35 (1) ◽  
pp. 198-203 ◽  
Author(s):  
Shixiang Ma ◽  
Yun Tang ◽  
Yuyang Ma ◽  
Daming Dong ◽  
Lianbo Guo ◽  
...  

Heavy metal particles in water are mainly derived from acidic industrial wastewater. The pH effect on the detection of toxic metals in wastewater by LIBS-PT method was investigated.


Author(s):  
Luc Van Ginneken ◽  
Erik Meers ◽  
Ruben Guisson ◽  
Ann Ruttens ◽  
Kathy Elst ◽  
...  

In June 2007, a project started in Flanders (Belgium) in which we will apply phytoremediation to clean soils that are diffusely polluted with heavy metals. Uptake ranges of heavy metals by rape seed, maize and wheat will be enhanced by increasing the bioavailability of these heavy metals by the addition of biodegradable physico‐chemical agents and by stimulating the heavy‐metal uptake capacity of the microbial community in and around the plant. In addition, the harvested biomass crops will be converted into bioenergy by using different energy‐recovery‐techniques. The energy and heavy metal mass balances will be compared for four different energy‐recovery techniques (anaerobic digestion, incineration, gasification and production of biodiesel). The overall information obtained will result in an economic evaluation of the use of phytoremediation combined with bioenergy production for the remediation of sites which are diffusely polluted with heavy metals. In the present review we will first explain the most important research steps investigated in our phytoremediation project. Secondly, an overview of literature discussing the phytoremediation capacity of rape seed to clean soils that are contaminated with heavy metals and the possibilities to produce biodiesel from this (heavy metal polluted) rape seed will be discussed in more detail.


Agro-Science ◽  
2021 ◽  
Vol 20 (3) ◽  
pp. 99-103
Author(s):  
R.Y. Oladunjoye ◽  
O.O. Fafioye ◽  
S.T. Bankole ◽  
A.H. Adedeji ◽  
A.S. Edoh

The research examined the accumulations of six heavy metals including chromium (Cr), lead (Pb), iron (Fe), zinc (Zn), cadmium (Cd), and copper (Cu) in water as well as in three male and female species of crab (Cardisoma armatum, Callinectes danae, Callinectes ornatus) sampled from Ojo River in Lagos State of Nigeria. Physico-chemical parameters of the water samples from the River and heavy metal concentrations in the crab species obtained also from the River were examined using standard methods. The results showed that total dissolved solute (TDS), electrical conductivity (EC), salinity, dissolved oxygen, biological oxygen demand and chemical oxygen demand varied significantly along the River course, with TDS and EC being relatively high. Heavy metals detected in the crabs were Fe, Cu and Zn, with Cu being the highest in the species examined. The species C. ornatus presented the highest content of Cu followed by C. armatum and C. danae. The content of heavy metals (mg kg–1) among the crab species showed that Cu (23.47±0.10) > Zn (19.06±0.01) > Fe (16.85±0.01) in all the species except in C. armatum where Fe (1.26±0.44) was > Zn (1.19±0.02). Furthermore, Pb, Cd and Cr were not found in the crabs and this could be associated with the fact that the area consists mainly of residential houses, farms and a few industries. Notably, the content of the heavy metals was larger in the female than the male crabs. This study reported different levels of heavy metal accumulation in male and female species of crabs. Also, the shell fishes from Ojo River might be considered safe for consumption, but the need for continuous monitoring to prevent bioaccumulation is recommended.


2016 ◽  
Vol 11 (7) ◽  
pp. 3759-3764
Author(s):  
Ukiwe L.N ◽  
C.I.A Nwoko ◽  
U.U. Egereonu ◽  
S.N. Ukachukwu

Seasonal variation of physico-chemical variables of Oguta Lake, Nigeria was studied. Results obtained using standard analytical methods indicated that in the rainy and dry seasons (July and August) and (October and November), 2014, iron (Fe; 1.401 mg/l in November) was the overall metal observed in the lake, while mercury (Hg) was not detected throughout the period of study. Heavy metals concentrations observed were higher (not significantly) during the dry than the rainy season. The values observed for dissolved oxygen (DO), biological and chemical oxygen demand (BOD and COD) were within WHO permissible limits. The above evidence revealed that there was signs of heavy metal (Fe) pollution of the lake, and steps must be taking for constant monitoring of anthropogenic inputs into the lake. 


Sign in / Sign up

Export Citation Format

Share Document