scholarly journals Facilitating GL13K Peptide Grafting on Polyetheretherketone via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide: Surface Properties and Antibacterial Activity

2021 ◽  
Vol 23 (1) ◽  
pp. 359
Author(s):  
Chih-Chien Hu ◽  
Selvaraj Rajesh Kumar ◽  
Truong Thi Tuong Vi ◽  
Yu-Tzu Huang ◽  
Dave W. Chen ◽  
...  

In the present work, the antimicrobial peptide (AMP) of GL13K was successfully coated onto a polyetheretherketone (PEEK) substrate to investigate its antibacterial activities against Staphylococcus aureus (S. aureus) bacteria. To improve the coating efficiency, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was mixed with a GL13K solution and coated on the PEEK surface for comparison. Both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) data confirmed 30% greater peptide coating on PEEK/GL13K-EDC than PEEK without EDC treatment. The GL13K graft levels are depicted in the micrograms per square centimeter range. The PEEK/GL13K-EDC sample showed a smoother and lower roughness (Rq of 0.530 µm) than the PEEK/GL13K (0.634 µm) and PEEK (0.697 µm) samples. The surface of the PEEK/GL13K-EDC was more hydrophilic (with a water contact angle of 24°) than the PEEK/GL13K (40°) and pure PEEK (89°) samples. The pure PEEK disc did not exhibit any inhibition zone against S. aureus. After peptide coating, the samples demonstrated significant zones of inhibition: 28 mm and 25 mm for the PEEK/GL13K-EDC and PEEK/GL13K samples, respectively. The bacteria-challenged PEEK sample showed numerous bacteria clusters, whereas PEEK/GL13K contained a little bacteria and PEEK/GL13K-EDC had no bacterial attachment. The results confirm that the GL13K peptide coating was able to induce antibacterial and biofilm-inhibitory effects. To the best of our knowledge, this is the first report of successful GL13K peptide grafting on a PEEK substrate via EDC coupling. The present work illustrates a facile and promising coating technique for a polymeric surface to provide bactericidal activity and biofilm resistance to medical implantable devices.

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1205 ◽  
Author(s):  
Liying Liu ◽  
Rui Cai ◽  
Yejing Wang ◽  
Gang Tao ◽  
Lisha Ai ◽  
...  

Antibacterial materials are of great importance in preventing bacterial adhesion and reproduction in daily life. Silver nanoparticle (AgNP) is a broad-spectrum antibacterial nanomaterial that has attracted significant attentions for its ability to endow natural materials with antibacterial ability. Silk sericin (SS) has a great advantage for biomaterial application, as it is a natural protein with excellent hydrophilicity and biodegradability. In this study, we prepared AgNPs and polyelectrolyte membrane (PEM) modified SS/Agar films through the layer-by-layer adsorption technique and ultraviolet-assisted AgNPs synthesis method. The film was well characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy. Other properties such as water contact angle, wettability and tensile strength, the release of silver were also studied. The antimicrobial activity of AgNPs-PEM-SS/Agar film was investigated against Escherichia coli and Staphylococcus aureus as the model microorganisms by the inhibition zone and bacterial growth curve assays. The results suggested that the AgNPs-PEM-SS/Agar film had excellent mechanical performance, high hydrophilicity, prominent water absorption ability, as well as outstanding and durable antibacterial activity. Therefore, the prepared novel AgNPs-PEM-SS/Agar composite film is proposed as a potentially favorable antibacterial biomaterial for biomedical applications.


Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 687 ◽  
Author(s):  
Chongchong Li ◽  
Ruina Ma ◽  
An Du ◽  
Yongzhe Fan ◽  
Xue Zhao ◽  
...  

Super-hydrophobic film with hierarchical micro/nano structures was prepared by galvanic replacement reaction process on the surface of galvanized steel. The effects of the etching time and copper nitrate concentration on the wetting property of the as-prepared surfaces were studied. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical technique were employed to characterize the surface morphology, chemical composition, and corrosion resistance. The stability and self-cleaning property of the as-fabricated super-hydrophobic film were also evaluated. The super-hydrophobic film can be obtained within 3 min and possesses a water contact angle of 164.3° ± 2°. Potentiodynamic polarization measurements indicated that the super-hydrophobic film greatly improved the corrosion resistance of the galvanized steel in 3.5 wt % NaCl aqueous solution. The highest inhibition efficiency was estimated to be 96.6%. The obtained super-hydrophobic film showed good stability and self-cleaning property.


2013 ◽  
Vol 690-693 ◽  
pp. 1636-1640 ◽  
Author(s):  
Te Hsing Wu ◽  
Ko Shao Chen ◽  
Lie Hang Shen

In this study, We immobilized hydrogel material onto expanded polytetrafluoroethylene (ePTFE) film and used as an functional biomaterial. The material is a film containing titanium oxide onto polymer sheet. The hydrogel film is hydrophilic, bacterial inactivated and bio-compatible. In order to improve the ePTFE film biocompatibility, the cold plasma or γ-ray technology was used with acetic acid as monomer to deposit onto ePTFE film and then (N-isopropylacrylamide) was grafted onto the surface by radiation photo-grafting. The characteristics of the material surface were evaluated with X-ray photoelectron spectroscopy (XPS), FTIR and water contact angle. It was found that the contact angle of water on the untreated ePTFE significantly decrease from125° to 72° after ePTFE film being treated with acetic acid plasma deposition procedure. Due to the hydrophilicity of poly (N-isopropylacrylamide), so the contact angle of water on the ePTFE-g-NIPAAm almost approached to 0°. This thermal sensitive ePTFE hydrogels can be applied to artificial guiding tube and wound dressing material.


2011 ◽  
Vol 396-398 ◽  
pp. 1619-1623
Author(s):  
Zhao Ping Song ◽  
Jun Rong Li ◽  
Hui Ning Xiao

Hydrophobic modification of cellulose fibres was conducted by plasma-induced polymer grafting in an attempt to increase the hydrophobicity of paper. Two hydrophobic monomers, i.e., butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA) were grafted on cellulose fibres, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated, including the contact time and reaction temperature with monomers, and the dosage of monomers. Contact-angle measurement, infrared spectrum (IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting. The results showed that the hydrophobic property of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the surface of the paper reached up to higher than125°.


2014 ◽  
Vol 29 (2) ◽  
pp. 232-239 ◽  
Author(s):  
Xiaotang Du ◽  
Jeffery S. Hsieh

Abstract A silicon wafer coated with cellulose was prepared to measure the deposition of stickies on fibers and polyvinyl acetate (PVAc) suspension is prepared as the model compound. In addition, two methods, shear force and aeration, were used to induce the agglomeration and deposition of microstickies. The model surface was characterized by X-ray photoelectron spectroscopy (XPS) and water contact angle. The results from new methods were also compared with old methods of High-density polyethylene (HDPE) deposition and INGEDE (International Association of the Deinking Industry) Method 4. Although these methods have been used to predict the deposition of stickies onto the drying felt or other equipment, the deposition of stickies onto fibers can differ significantly due to the hydrophilic nature of the fibers. This is the first measurement method that could help to predict the deposition of stickies onto paper products, which has been shown to cause detrimental effects.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Qian Li ◽  
Zhihong Wang ◽  
Qiang Zhao ◽  
Lianyong Wang ◽  
Shufang Wang ◽  
...  

AbstractAn amphiphilic block copolymer, poly(ε-caprolactone)-b-poly (sulfobetaine methacrylate), (PCL-b-PSBMA), which comprising of hydrophobic polyester segment and hydrophilic zwitterionic segment, was synthesized by ringopening polymerization (ROP) together with atom transfer radical polymerization (ATRP). The chemical structure and composition of the synthesized copolymers were first investigated by 1HNMR and GPC. The copolymers were further processed into non-woven fabrics by electrospinning. The surface chemical composition, fiber morphology, hydrophilic/hydrophobic property, and cell viability of the as-prepared scaffold were evaluated by X-ray photoelectron spectroscopy, SEM, water contact angle and uptake measurement, and MTT assay, respectively. All these results indicate that this kind of copolymers is a suitable candidate for the biomedical application.


2006 ◽  
Vol 514-516 ◽  
pp. 1054-1058 ◽  
Author(s):  
Tânia Costa ◽  
Ana Paula Serro ◽  
Eduardo Pires ◽  
Rogerio Colaço

The influence of sterilization with γ-irradiation in the properties of plasma sprayed hydroxyapatite (HAp) coatings used for medical implants is investigated in this work. HAp coatings were applied on titanium alloy substrates by plasma spraying and then submitted to 1 and 10 cycles of sterilization with γ-irradiation. As-applied HAp coatings were used as control samples. Afterwards, the modifications on the samples, induced by the irradiation process, were evaluated by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). Water contact angle measurements as well as adhesion tests were also carried out in order to evaluate the influence of the irradiation process on the wettability and mechanical behaviour of the HAp coatings. No microstructural modifications were detected by X-ray diffraction after sterilization. However, the results show that sterilization with γ-irradiation originates modifications of the surface of HAp, as detected by a change of color of the coatings and by the XPS analysis. Nevertheless, these modifications do not result in significant changes in the wettability and mechanical behaviour of the HAp coatings.


1997 ◽  
Vol 11 (4) ◽  
pp. 388-394 ◽  
Author(s):  
H.C. Van Der Mei ◽  
H.J. Busscher

Physicochemical and structural properties of microbial cell surfaces play an important role in their adhesion to surfaces and are determined by the chemical composition of the outermost cell surface. Many traditional methods used to determine microbial cell wall composition require fractionation of the organisms and consequently do not yield information about the composition of the outermost cell surface. X-ray photoelectron spectroscopy (XPS) measures the elemental composition of the outermost cell surfaces of micro-organisms. The technique requires freeze-drying of the organisms, but, nevertheless, elemental surface concentration ratios of oral streptococcal cell surfaces with peritrichously arranged surface structures showed good relationships with physicochemical properties measured under physiological conditions, such as zeta potentials. Isoelectric points ap-peared to be governed by the relative abundance of oxygen- and nitrogen-containing groups on the cell surfaces. Also, the intrinsic microbial cell-surface hydrophobicity by water contact angles related to the cell-surface composition as by XPS and was highest for strains with an elevated isoelectric point. Inclusion of elemental surface compositions for tufted streptococcal strains caused deterioration of the relationships found. Interestingly, hierarchical cluster analysis on the basis of the elemental surface compositions revealed that, of 36 different streptococcal strains, only four S. rattus as well as nine S. mitis strains were located in distinct groups, well separated from the other streptococcal strains, which were all more or less mixed in one group.


2017 ◽  
Vol 13 ◽  
pp. 648-658 ◽  
Author(s):  
Loïc Pantaine ◽  
Vincent Humblot ◽  
Vincent Coeffard ◽  
Anne Vallée

Aniline-terminated self-assembled monolayers (SAMs) on gold surfaces have successfully reacted with ArSO2NHOSO2Ar (Ar = 4-MeC6H4 or 4-FC6H4) resulting in monolayers with sulfamide moieties and different end groups. Moreover, the sulfamide groups on the SAMs can be hydrolyzed showing the partial regeneration of the aniline surface. SAMs were characterized by water contact angle (WCA) measurements, Fourier-transform infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS).


Sign in / Sign up

Export Citation Format

Share Document