scholarly journals Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease

2021 ◽  
Vol 23 (1) ◽  
pp. 438
Author(s):  
Judith M. A. Verhagen ◽  
Joyce Burger ◽  
Jos A. Bekkers ◽  
Alexander T. den Dekker ◽  
Jan H. von der Thüsen ◽  
...  

Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-β gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingjia Zhang ◽  
Yi Zhang ◽  
Haitao Sun ◽  
Hui Ni ◽  
Jialing Sun ◽  
...  

Objective: Corticosterone causes significant neurotoxicity in primary hippocampal neurons which is associated with depression. Dysfunctional autophagy is implicated in cognitive impairment and depressive-like behavior. The traditional Chinese medicine Sinisan (SNS) is highly effective in clinical treatment of depression. However, the molecular mechanisms underlying therapeutic effects of SNS are unknown.Purpose: The aim of this study was to elucidate the protective effect of SNS and the underlying mechanisms against corticosterone-induced neuronal damage.Study Design: The effects of serum derived from rats containing SNS (or untreated controls) on the expression of autophagy-related molecules in primary rat hippocampal neurons exposed to different concentrations of corticosterone for different intervals were explored.Methods: CCK-8 assay, LDH assay were used to analyze cell viability and LDH activity. Western blot, qRT-PCR, and immunofluorescence assays were used to determine protein and mRNA expression levels of molecules such as LC3, p62, Beclin1, ULK1, PI3K, p-PI3K, Akt p-Akt, mTOR, p-mTOR, p70S6, p-p70S6, 4ebp1 and p-4ebp1.Results: Corticosterone induced a dose- and time-dependent reduction in cellular viability. Moreover, corticosterone (100–400 μM) treatment for 24 h increased LC3-II/LC3-I protein ratio, increased Beclin1 and ULK1 protein expression levels, and decreased p62, PI3K, p-PI3K, p-Akt, p-mTOR, p-p70S6, and p-4ebp1 protein expression levels. Notably, SNS-containing serum reversed corticosterone-induced reduction of neuronal viability, and increased p62, PI3K, p-Akt, p-mTOR, p-p70S6, and p-4ebp1 protein and mRNA expression levels. In addition, SNS-containing serum decreased LC3-II/LC3-I protein ratio, and downregulated Beclin1, and ULK1 protein and mRNA expression in primary hippocampal neurons.Conclusion: SNS protects primary hippocampal neurons against corticosterone-induced neurotoxicity by preventing excessive autophagy through activation of PI3K/AKT/mTOR pathway.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2845-2845
Author(s):  
Akiko Nagamachi ◽  
Yuko Ozaki ◽  
Hirotaka Matsui ◽  
Akinori Kanai ◽  
Toshiya Inaba

Abstract Polynuclear cells (PNCs) are routinely observed in the bone marrow of MDS patients. They are binuclear, trinuclear or even multinuclear cells with or without micronuclei, the underlying molecular mechanisms for the production of which are largely unknown. Because loss of the long arm of chromosome 7 (7q-) was reported to be associated with the presence of a higher frequency of PNCs, gene(s) preventing bone marrow cells from carrying such nuclear abnormalities may be located at 7q. We previously identified three candidate anti-myeloid tumor suppressor genes, namely Samd9, Samd9L and Miki, from the microdeletion in the 7q21 band frequently detected in JMML patients. SAMD9L-deficient mice develop MDS resembling human diseases associated with 7q-, most likely through enhancement of cytokine signals (Nagamachi et al., Cancer Cell 2013). Miki (mitotic kinetics regulator) translocates from the Golgi apparatus to mitotic centrosomes coincident with the disappearance of the Golgi body after poly-ADP-ribosylation (PARsylation). Miki is indispensable for centrosome maturation [the rapid increase of pericentriolar materials (PCM) during prophase and prometaphase], which is required for the production of robust mitotic spindles to move chromosomes promptly (Ozaki et al., Mol. Cell 2012). Consequently, as observed by time-lapse imaging of HeLa cells expressing histone H2A-GFP, downregulation of Miki by siRNA markedly prolonged the duration of prometaphase to more than several hours (normally around 15 minutes). Chromosomes were scarcely able to align and cells exited from prometaphase either by cell death or by decondensation of each chromosome. In the latter, cells with decondensed chromosomes then fused with one another within 30 minutes to form cells with relatively large nuclei, resulting in PNCs containing various sizes of nuclei including micronuclei. Indeed, reduction of Miki in HeLa cells by siRNA increased the frequency of PNCs from less than 0.5% to 4.5%. To test whether the chaotic chromosome decondensation in prometaphase causes the accumulation of PNCs observed in MDS, we initially used five cell lines derived from MDS associated with 7q-. PARsylated Miki was barely detectable in these cell lines and we found more cells at prometaphase than at metaphase (the ratio of prometa:meta in the lines ranged from 1.7:1 to 5.7:1). In contrast, in seven cell lines expressing PARsylated Miki at high levels, mitotic cells in prometaphase were found less frequently or at roughly the same frequency as those in metaphase (prometa:meta ratio 0.6:1 to 1.3:1). PNCs in five cell lines harboring 7q-were also more frequent (5.9 - 10.2%) than in the seven cell lines expressing high PARsylated Miki (0.8 - 2.4%). In addition, when we reduced Miki expression levels by shRNA in K562 cells, which express PARsylated Miki at high levels, the prometa:meta ratio increased from 1.1:1 to 3.8:1 and PNCs increased from 0.8% to 8.5%. This suggests that, as in HeLa cells, low expression levels of Miki cause prolongation of prometaphase and increase PNCs in blood cells. Fresh bone marrow preparations from 37 patients with MDS were examined to determine whether Miki mRNA-expression levels influence the prometaphase:metaphase ratio and the frequency of PNCs. We found a strong negative correlation (R=-0.59, p<0.01) between Miki mRNA expression levels in mononuclear cells of bone marrow samples and the prometa:meta ratio. We also found a moderate negative correlation (R=-0.4, p<0.05) between PNC frequencies and Miki mRNA expression levels. In addition, there was a strong positive correlation between prometa:meta ratios and PNC frequencies (R=-0.56, P<0.01). In conclusion, lack of one allele of the Miki gene due to 7q-reduces PARsylated Miki, resulting in the increase of PNCs through decondensation of chromosomes in prolonged prometaphase. This may contribute to poor outcome of MDS associated with 7q-through increased chromosome instability. Disclosures No relevant conflicts of interest to declare.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 820
Author(s):  
Ezgi Öztaş ◽  
Mehtap Kara ◽  
Tuğçe Boran ◽  
Enes Bişirir ◽  
Ecem Fatma Karaman ◽  
...  

Acetamiprid (ACE), a commonly used neonicotinoid insecticide, is correlated with neurological symptoms, immunotoxicity and hepatotoxicity. Cellular stress and damage could play an important role in ACE-induced neurotoxicity; however, its mechanism has not been fully understood. We evaluated the effects of ACE on oxidative stress, endoplasmic reticulum (ER) stress, cellular death, mRNA expression levels of related genes and protein expressions of related molecular mechanisms in SH-SY5Y human neuroblastoma cells. The half maximal inhibition of enzyme activity (IC50) value of ACE was determined as 4.26 mM after 24 h of treatment by MTT assay. We revealed an increase in reactive oxygen species (ROS) production and calcium release. Significant increases were measured in inositol-requiring enzyme 1-alpha (IRE1-α) and binding immunoglobulin protein 90 (GRP90) levels as well as mRNA expression levels of caspase 3, 4 and 9 genes indicating enhanced ER stress. Apoptosis and ER stress-related genes were significantly upregulated at ≥2 mM. Indeed, ACE caused apoptosis and necroptosis while necrosis was not observed. There was a significant increase in the protein level of mitogen-activated protein kinase-8 (MAPK8) at 4 mM of ACE while no change was seen for nuclear factor kappa-B (NF-κB) and tumor necrosis factor-alpha (TNF-α). In conclusion, increased cellular stress markers could be proposed as an underlying mechanism of ACE-induced cell death in neural cells.


2021 ◽  
pp. 1-17
Author(s):  
Mona Abdelhamid ◽  
Chunyu Zhou ◽  
Kazuya Ohno ◽  
Tetsuya Kuhara ◽  
Ferdous Taslima ◽  
...  

Background: Probiotic supplementation reestablishes microbiome diversity and improves brain function in Alzheimer’s disease (AD); their molecular mechanisms, however, have not yet been fully illustrated. Objective: We investigated the effects of orally supplemented Bifidobacterium breve MCC1274 on cognitive function and AD-like pathologies in AppNL-G-F mice. Methods: Three-month-old AppNL-G-F mice were orally supplemented with B. breve MCC1274 for four months. The short-term memory function was evaluated using a novel object recognition test. Amyloid plaques, amyloid-β (Aβ) levels, Aβ fibril, amyloid-β protein precursor and its processing enzymes, its metabolic products, glial activity, and cell proliferation in the subgranular zone of the dentate gyrus were evaluated by immunohistochemistry, Aβ ELISA, western blotting, and immunofluorescence staining. The mRNA expression levels of pro- and anti-inflammatory cytokines were determined by qRT-PCR analysis. Results: We found that the oral B. breve MCC1 274 supplementation prevented memory impairment in AppNL-G-F mice and decreased hippocampal Aβ levels through the enhancement of the a-disintegrin and metalloproteinase 10 (ADAM10) level. Moreover, administration of the probiotic activated the ERK/HIF-1α signaling pathway responsible for increasing the ADAM10 level and also attenuated microglial activation, which in turn led to reduction in the mRNA expression levels of pro-inflammatory cytokines in the brain. In addition, B. breve MCC1274 supplementation increased the level of synaptic proteins in the hippocampus. Conclusion: Our findings support the possibility that oral B. breve MCC1274 supplementation might be used as a potential preventive therapy for AD progression.


2020 ◽  
Author(s):  
Zeyad Alehaideb ◽  
Ghada Alatar ◽  
Atef Nehdi ◽  
Abeer Albaz ◽  
Hamad Al-Eidi ◽  
...  

Abstract Background: Commiphora myrrha (Nees) Engl. (C. myrrha) resin is one of the oldest Middle Eastern herbal medicine used for treatment and prevention of numerous diseases. This resin is prepared in different methods and widely consumed among Saudi Arabian patients. Despite its popularity, no studies have been done on potential modulation effects of C. myrrha resin extracts on human cytochrome P450 (CYP) drug-metabolizing enzyme expression.Methods: The C. myrrha extracts were prepared by two different methods of sonication and boiling resembling the most popular traditional preparations of maceration and decoction, respectively. Both extracts were fingerprinted using high-performance liquid chromatography equipped with ultra-violet detector (HPLC-UVD). The viability of HepG2 cells treated with aqueous extracts was determined using Promega CellTiter-Glo® assay in order to select the efficient and non-toxic resin extract concentrations for phase-I metabolic isoenzyme expression analysis. The isoenzyme gene and protein expression levels of CYP 2C8, 2C9, 2C19, and 3A4 were measured using reverse transcription-quantitative polymerase chain reaction and Western blot technologies, respectively. Results: The HPLC-UVD fingerprinting revealed different chromatograms for C. myrrha extracts indicating possible differences in their modulation effects on CYP expression. Both aqueous extracts were toxic to HepG2 cells when tested at concentrations exceeding 150 µg/ml of dry crude extract. The CYP 2C8, 2C9, and 2C19 mRNA expression levels increased up to 4.0-fold after cell treatment with concentrations ranging from 1 to 30 µg/ml C. myrrha extracts, as compared with the untreated cells. However, the modulation of CYP3A4 mRNA expression levels was only significant at 30 µg/ml of crude extract exceeding the 2.0-fold cutoff. The up-regulation of CYP mRNA expression levels induced by C. myrrha extracts was confirmed at the CYP protein expression levels as well. Conclusions: The C. myrrha aqueous extracts modulate CYP 2C8, 2C9, 2C19, and 3A4 gene expression at clinically-relevant concentrations regardless of preparation methods. Further in vitro and in vivo experiments are required for the establishment of herb-drug interaction profile for these traditional medicinal resin extracts.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Hu ◽  
Xiaoqian Shang ◽  
Liang Wang ◽  
Jiahui Fan ◽  
Yue Wang ◽  
...  

Abstract Aim Brucellar spondylitis (BS) is one of the most serious complications of brucellosis. CXCR3 is closely related to the severity of disease infection. This research aimed to study the degree of BS inflammatory damage through analyzing the expression levels of CXCR3 and its ligands (CXCL9 and CXCL10) in patients with BS. Methods A total of 29 BS patients and 15 healthy controls were enrolled. Real-Time PCR was used to detect the mRNA expression levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood mononuclear cells (PBMCs) of BS patients and healthy controls. Hematoxylin-Eosin staining was used to show the pathological changes in BS lesion tissues. Immunohistochemistry staining was used to show the protein expression levels of Brucella-Ab, IFN-γ, CXCR3, CXCL9 and CXCL10 in BS lesion tissues. At the same time, ELISA was used to detect the serum levels of IFN-γ, CXCL9 CXCL10 and autoantibodies against CXCR3 in patients with BS. Results In lesion tissue of BS patients, it showed necrosis of cartilage, acute or chronic inflammatory infiltration. Brucella-Ab protein was abundantly expressed in close lesion tissue. And the protein expression levels of IFN-γ, CXCR3 and CXCL10 were highly expressed in close lesion tissue and serum of BS patients. At the same time, the mRNA expression levels of IFN-γ, CXCR3 and CXCL10 in PBMCs of BS patients were significantly higher than those in controls. Conclusion In our research, the expression levels of IFN-γ, CXCR3 and its ligands were significantly higher than those in controls. It suggested that high expression levels of IFN-γ, CXCR3 and its ligands indicated a serious inflammatory damage in patients with BS.


2007 ◽  
Vol 16 (4-5) ◽  
pp. 171-177
Author(s):  
Adrian Lozada ◽  
Kaj Karlstedt ◽  
Pertti Panula ◽  
Antti A. Aarnisalo

In the auditory periphery, GDNF has been shown to have a trophic effect to spiral ganglion neurons, both during development and in adult animals. We have studied the effect of unilateral labyrinthectomy (UL) on protein levels and expression of GDNF multicomponent receptor complex: the ret tyrosine kinase and coreceptor GFRα-1 in the medial vestibular nucleus of the adult rat. GFRα-1 protein levels display an increasing trend in ipsilateral medial vestibular nucleus culminating at 48 h post UL. On the other hand, GFRα-1 mRNA expression levels in ipsi- and contralateral medial vestibular nucleus show a steadily decreasing trend that is significant at 1 week post-lesion. Protein levels for c-Ret isoforms also show an initial bilateral decreasing trend that ceases at 48 h in ipsilateral medial vestibular nucleus but persists on the contralateral side. c-Ret mRNA expression levels show a significant decrease at 4 h post UL followed by another significant decrease 1 week post UL. Our data would suggest that neurotrophins belonging to the GDNF family are involved in this model of post-lesional CNS plasticity.


Sign in / Sign up

Export Citation Format

Share Document