scholarly journals MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling

2022 ◽  
Vol 23 (1) ◽  
pp. 510
Author(s):  
Pan Luo ◽  
Dongwei Di ◽  
Lei Wu ◽  
Jiangwei Yang ◽  
Yufang Lu ◽  
...  

Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.

Author(s):  
Jae Young Kim ◽  
Young-Joon Park ◽  
June-Hee Lee ◽  
Zee Hwan Kim ◽  
Chung-Mo Park

Abstract The gaseous phytohormone ethylene plays vital roles in diverse developmental and environmental adaptation processes, such as fruit ripening, seedling establishment, mechanical stress tolerance, and submergence escape. It is also known that in the light, ethylene promotes hypocotyl growth by stimulating the expression of PHYTOCHROME INTERACTING FACTOR3 (PIF3) transcription factor, which triggers microtubule reorganization during hypocotyl cell elongation. In particular, ethylene has been implicated in plant responses to warm temperatures in recent years. However, it is currently unclear how ethylene signals are functionally associated with hypocotyl thermomorphogenesis at the molecular level. Here, we show that ETHYLENE-INSENSITIVE3 (EIN3)-mediated ethylene signals attenuate hypocotyl thermomorphogenesis by suppressing auxin response. At warm temperatures, when the activity of the PIF4 thermomorphogenesis promoter is prominently high, the ethylene-activated EIN3 transcription factor directly induces the transcription of ARABIDOPSIS PP2C CLADE D7 (APD7) gene encoding a protein phosphatase that inactivates the plasma membrane (PM) H+-ATPase proton pumps. In conjunction with the promotive role of the PM H+-ATPases in hypocotyl cell elongation, our observations strongly support that the EIN3-directed induction of APD7 gene is linked with the suppression of auxin-induced cell expansion, leading to the reduction of thermomorphogenic hypocotyl growth. Our data demonstrate that APD7 acts as a molecular hub that integrates ethylene and auxin signals into hypocotyl thermomorphogenesis. We propose that the ethylene-auxin signaling crosstalks via the EIN3-APD7 module facilitate the fine-tuning of hypocotyl thermomorphogenesis under natural environments, which often fluctuate in a complex manner.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 325
Author(s):  
Petra Korać ◽  
Mariastefania Antica ◽  
Maja Matulić

MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.


2021 ◽  
Vol 22 (1) ◽  
pp. 437
Author(s):  
Meng Wang ◽  
Panpan Li ◽  
Yao Ma ◽  
Xiang Nie ◽  
Markus Grebe ◽  
...  

Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (β-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.


2011 ◽  
Vol 49 (9) ◽  
pp. 1040-1050 ◽  
Author(s):  
Anca Macovei ◽  
Alma Balestrazzi ◽  
Massimo Confalonieri ◽  
Matteo Faé ◽  
Daniela Carbonera

2021 ◽  
Author(s):  
Arnaud-Thierry Djami-Tchatchou ◽  
Zipeng Alex Li ◽  
Paul Stodghill ◽  
Melanie J. Filiatrault ◽  
Barbara N. Kunkel

The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 ( Pto DC3000). To learn more about the impact of IAA on regulation of Pto DC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta . Collectively the data indicate that IAA modulates many aspects of Pto DC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain Pto DC000 and one of its hosts, Arabidopsis thaliana . However, the mechanisms by which IAA impacts the biology of Pto DC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in Pto DC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.


Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 1981-1989 ◽  
Author(s):  
Stéphane Uroz ◽  
Cathy D'Angelo-Picard ◽  
Aurélien Carlier ◽  
Miena Elasri ◽  
Carine Sicot ◽  
...  

Bacteria degrading the quorum-sensing (QS) signal molecule N-hexanoylhomoserine lactone were isolated from a tobacco rhizosphere. Twenty-five isolates degrading this homoserine lactone fell into six groups according to their genomic REP-PCR and rrs PCR-RFLP profiles. Representative strains from each group were identified as members of the genera Pseudomonas, Comamonas, Variovorax and Rhodococcus. All these isolates degraded N-acylhomoserine lactones other than the hexanoic acid derivative, albeit with different specificity and kinetics. One of these isolates, Rhodococcus erythropolis strain W2, was used to quench QS-regulated functions of other microbes. In vitro, W2 strongly interfered with violacein production by Chromobacterium violaceum, and transfer of pathogenicity in Agrobacterium tumefaciens. In planta, R. erythropolis W2 markedly reduced the pathogenicity of Pectobacterium carotovorum subsp. carotovorum in potato tubers. These series of results reveal the diversity of the QS-interfering bacteria in the rhizosphere and demonstrate the validity of targeting QS signal molecules to control pathogens with natural bacterial isolates.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Akihiro Matsui ◽  
Kayoko Mizunashi ◽  
Maho Tanaka ◽  
Eli Kaminuma ◽  
Anh Hai Nguyen ◽  
...  

In plants, miRNAs and siRNAs, such as transacting siRNAs (ta-siRNAs), affect their targets through distinct regulatory mechanisms. In this study, the expression profiles of small RNAs (smRNAs) inArabidopsisplants subjected to drought, cold, and high-salinity stress were analyzed using 454 DNA sequencing technology. Expression of three groups of ta-siRNAs (TAS1, TAS2, and TAS3) and their precursors was downregulated inArabidopsisplants subjected to drought and high-salinity stress. Analysis of ta-siRNA synthesis mutants and mutatedARF3-overexpressing plants that escape the tasiRNA-ARF target indicated that self-pollination was hampered by short stamens in plants under drought and high-salinity stress. Microarray analysis of flower buds ofrdr6and wild-type plants under drought stress and nonstressed conditions revealed that expression of floral development- and auxin response-related genes was affected by drought stress and by theRDR6mutation. The overall results of the present study indicated that tasiRNA-ARF is involved in maintaining the normal morphogenesis of flowers in plants under stress conditions through fine-tuning expression changes of floral development-related and auxin response-related genes.


2020 ◽  
Vol 14 (02) ◽  
pp. 79-89
Author(s):  
Ying Chen ◽  
Vinay Tergaonkar

Long non-coding RNA (lncRNA) is a new class of endogenous molecules identified in recent years. Studies on the cancer transcriptome have identified a number of lncRNAs with distinct expression patterns in different types of cancer, indicating that this populous group of molecules can modulate cancer progression. In addition, advances in revealing the molecular principles of cancer-associated lncRNAs made them amenable for therapeutic intervention. Although more than 50,000 lncRNAs have been identified, their functions in cellular homeostasis and pathophysiological processes remain largely uncharacterized. In this review, we summarize cancer-related lncRNAs that have been identified in recent years and discuss their mechanistic roles as oncogenes or tumor suppressors. These findings provide insights into clinical application of lncRNAs as biomarkers or therapeutic targets.


2020 ◽  
Vol 117 (16) ◽  
pp. 9112-9121 ◽  
Author(s):  
Hehong Zhang ◽  
Lulu Li ◽  
Yuqing He ◽  
Qingqing Qin ◽  
Changhai Chen ◽  
...  

Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.


Sign in / Sign up

Export Citation Format

Share Document