scholarly journals Irisin and Secondary Osteoporosis in Humans

2022 ◽  
Vol 23 (2) ◽  
pp. 690
Author(s):  
Roberta Zerlotin ◽  
Angela Oranger ◽  
Patrizia Pignataro ◽  
Manuela Dicarlo ◽  
Filippo Maselli ◽  
...  

Irisin is a peptide secreted by skeletal muscle following exercise that plays an important role in bone metabolism. Numerous experiments in vitro and in mouse models have shown that the administration of recombinant irisin promotes osteogenesis, protects osteocytes from dexamethasone-induced apoptosis, prevents disuse-induced loss of bone and muscle mass, and accelerates fracture healing. Although some aspects still need to be elucidated, such as the dose- and frequency-dependent effects of irisin in cell cultures and mouse models, ample clinical evidence is emerging to support its physiological relevance on bone in humans. A reduction in serum irisin levels, associated with an increased risk of osteoporosis and bone fractures, was observed in postmenopausal women and in both men and women during aging, Recently, cohort studies of subjects with secondary osteoporosis showed that these patients have lower circulating levels of irisin, suggesting that this myokine could be a novel marker to monitor bone quality in this disease. Although there are still few studies, this review discusses the emerging data that are highlighting the involvement of irisin in some diseases that cause secondary osteoporosis.

2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher A. Waker ◽  
Melissa R. Kaufman ◽  
Thomas L. Brown

Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.


2011 ◽  
Vol 107 (10) ◽  
pp. 1466-1475 ◽  
Author(s):  
Gemma E. Walton ◽  
Ellen G. H. M. van den Heuvel ◽  
Marit H. W. Kosters ◽  
Robert A. Rastall ◽  
Kieran M. Tuohy ◽  
...  

Faecal microbial changes associated with ageing include reduced bifidobacteria numbers. These changes coincide with an increased risk of disease development. Prebiotics have been observed to increase bifidobacteria numbers within humans. The present study aimed to determine if prebiotic galacto-oligosaccharides (GOS) could benefit a population of men and women of 50 years and above, through modulation of faecal microbiota, fermentation characteristics and faecal water genotoxicity. A total of thirty-seven volunteers completed this randomised, double-blind, placebo-controlled crossover trial. The treatments – juice containing 4 g GOS and placebo – were consumed twice daily for 3 weeks, preceded by 3-week washout periods. To study the effect of GOS on different large bowel regions, three-stage continuous culture systems were conducted in parallel using faecal inocula from three volunteers. Faecal samples were microbially enumerated by quantitative PCR.In vivo, following GOS intervention, bifidobacteria were significantly more compared to post-placebo (P = 0·02). Accordingly, GOS supplementation had a bifidogenic effect in allin vitrosystem vessels. Furthermore, in vessel 1 (similar to the proximal colon), GOS fermentation led to more lactobacilli and increased butyrate. No changes in faecal water genotoxicity were observed. To conclude, GOS supplementation significantly increased bifidobacteria numbersin vivoandin vitro. Increased butyrate production and elevated bifidobacteria numbers may constitute beneficial modulation of the gut microbiota in a maturing population.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
John H. White

Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 529-529
Author(s):  
Sara Calzavarini ◽  
François Saller ◽  
Jose A. Fernandez ◽  
Linda Kadi ◽  
Anne C. Brisset ◽  
...  

Abstract Abstract 529 Protein S (ProS) is an important negative regulator of blood coagulation. Its physiological importance is evident in purpura fulminans and other life-threatening thrombotic disorders typical of ProS deficient patients. Our previous characterization of ProS deficiency in mouse models has shown similarities with the human phenotypes: heterozygous ProS-deficient mice (Pros+/−) had increased thrombotic risk whereas homozygous deficiency in ProS (Pros−/−) was incompatible with life (Blood 2009; 114:2307-2314). In tissues, ProS exerts cellular functions by binding to and activating tyrosine kinase receptors of the Tyro3 family (TAM) on the cell surface. To extend the analysis of coagulation defects beyond the Pros−/− phenotype and add new insights into the sites of synthesis ProS and its action, we generated mice with inactivated ProS in hepatocytes (Proslox/loxAlbCre+) as well as in endothelial and hematopoietic cells (Proslox/loxTie2Cre+). Both models resulted in significant reduction of circulating ProS levels and in a remarkable increased thrombotic risk in vivo. In a model of tissue factor (TF)-induced venous thromboembolism (VTE), only 17% of Proslox/loxAlbCre+ mice (n=12) and only 13% of Proslox/loxTie2Cre+ mice (n=14) survived, compared with 86% of Proslox/lox mice (n=14; P<0.001). To mimic a severe acquired ProS deficiency, ProS gene was inactivated at the adult stage using the polyI:C-inducible Mx1-Cre system (Proslox/loxMx1Cre+). Ten days after polyI:C treatment, Proslox/loxMx1Cre+ mice developed disseminated intravascular coagulation with extensive lung and liver thrombosis. It is worth noting that no skin lesions compatible with purpura fulminans were observed in any of the above-described models of partial ProS deficiency. In order to shed light on the pathogenesis of purpura fulminans, we exposed the different ProS-deficient mice to warfarin (0.2 mg/day). We observed that Pros+/−, Proslox/loxAlbCre+ and Proslox/loxTie2Cre+ mice developed retiform purpura (characterized by erythematous and necrotic lesions of the genital region and extremities) and died after 3 to 5 days after the first warfarin administration. In human, ProS is also synthesized by megakaryocytes and hence stored at high concentrations in circulating platelets (pProS). The role of pProS has been investigated by generating megakaryocyte ProS-deficient model using the PF4 promoter as Cre driver (Proslox/loxPf4Cre+). In the TF-induced VTE model, Proslox/loxPf4Cre+ (n=15) mice showed a significant increased risk of thrombosis compared to Proslox/lox controls (n=14; survival rate 47% and 86%, respectively; P<0.05). Furthermore, preliminary results suggest survival to be associated with higher circulating ProS levels. In order to evaluate the potential role of pProS in thrombus formation, we investigated the thrombotic response to intravenous injection of collagen-epinephrine in vivo and platelet function in vitro. Both in vivo and in vitro experiments showed similar results between Proslox/loxPf4Cre+ and Proslox/lox, indicating that platelet reactivity was not influenced by the absence of pProS. These data suggest that pProS is delivered at the site of thrombosis to inhibit thrombin generation. We further investigated the ability of ProS to function as a ligand of TAM receptors, by using homozygous and heterozygous deficient mice for both the TAM ligands ProS and Gas6. Gas6−/−Pros−/− mice died in utero and showed comparable dramatic bleeding and thrombotic phenotype as described for Pros−/− embryos. In conclusion, like complete ProS deficiency, double deficiency in ProS and Gas6 was lethal, whereas partial ProS deficiency was not. Mice partially deficient in ProS displayed a prothrombotic phenotype, including those with only deficiency in pProS. Purpura fulminans did not occur spontaneously in mice with partial Pros deficiency but developed upon warfarin administration. Thus, the use of different mice models of ProS deficiency can be instrumental in the study of its highly variable thrombotic phenotype and in the investigation of additional roles of ProS in inflammation and autoimmunity through TAM signaling. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 133 (19) ◽  
pp. 2069-2078 ◽  
Author(s):  
Wendy W. Pang ◽  
Agnieszka Czechowicz ◽  
Aaron C. Logan ◽  
Rashmi Bhardwaj ◽  
Jessica Poyser ◽  
...  

Abstract The myelodysplastic syndromes (MDS) represent a group of clonal disorders that result in ineffective hematopoiesis and are associated with an increased risk of transformation into acute leukemia. MDS arises from hematopoietic stem cells (HSCs); therefore, successful elimination of MDS HSCs is an important part of any curative therapy. However, current treatment options, including allogeneic hematopoietic cell transplantation (HCT), often fail to ablate disease-initiating MDS HSCs, and thus have low curative potential and high relapse rates. Here, we demonstrate that human HSCs can be targeted and eliminated by monoclonal antibodies (mAbs) that bind cell-surface CD117 (c-Kit). We show that an anti-human CD117 mAb, SR-1, inhibits normal cord blood and bone marrow HSCs in vitro. Furthermore, SR-1 and clinical-grade humanized anti-human CD117 mAb, AMG 191, deplete normal and MDS HSCs in vivo in xenograft mouse models. Anti-CD117 mAbs also facilitate the engraftment of normal donor human HSCs in MDS xenograft mouse models, restoring normal human hematopoiesis and eradicating aggressive pathologic MDS cells. This study is the first to demonstrate that anti-human CD117 mAbs have potential as novel therapeutics to eradicate MDS HSCs and augment the curative effect of allogeneic HCT for this disease. Moreover, we establish the foundation for use of these antibody agents not only in the treatment of MDS but also for the multitude of other HSC-driven blood and immune disorders for which transplant can be disease-altering.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2808-2808
Author(s):  
Ruchika Sharma ◽  
Amanda P Waller ◽  
Adam Guess ◽  
Shipra Agrawal ◽  
Berend Isermann ◽  
...  

Abstract INTRODUCTION Nephrotic Syndrome, one of the most common forms of glomerular disease, is characterized by massive proteinuria with structural and functional injury of specialized glomerular cells called podocytes. There is evidence to indicate that thrombin generation is enhanced in nephrotic syndrome. The massive protein loss in nephrotic syndrome includes loss of key coagulation regulators, leading to a complex coagulopathy, enhanced thrombin activating capacity and, consequently, increased risk for devastating thromboembolic complications. Recent in vitro studies have demonstrated that exposure to high concentrations of thrombin can injure podocytes, suggesting that thrombin may exacerbate glomerular injury. However, the molecular mechanisms by which thrombin induces podocyte injury are not yet known. Thrombin activates platelets, leukocytes, and other cells via the protease activated receptor (PAR) system. Thus, we hypothesized that thrombin exacerbates glomerular injury by enhancing podocyte apoptosis in a PAR-dependent manner. METHODS Experiments were performed with differentiated, conditionally immortalized human and rat podocytes. After 36 hours of thrombin (20nM) exposure podocyte apoptosis was determined by TUNEL assay. In human podocytes, specific PAR antibodies and activating peptides were utilized to determine which PARs mediate thrombin-induced podocyte apoptosis. Specific PAR antibodies (ab) included hPAR1ab (ATAP2), hPAR2 ab (SAM11), hPAR3 ab (8E8), hPAR4 ab (H-120). Activation peptides (AP) included PAR1 AP (TFFLRNPNDKNH2), PAR2 AP (SLIGRLNH2); PAR3 AP (TFRGAPOH); PAR4 AP (AYPGKFNH2) and a control peptide (FSLLRNNH2). Phalloidin assays were used to evaluate structural changes in the actin-cytoskeleton as a marker of podocyte stress. We have established that human thrombin is hemostatically active and regulated in rat plasma. Thus, rat podocytes were exposed to human thrombin, to determine toxicity, and specific PAR antibodies to determine if blockade of PARs could ameliorate thrombin mediated toxicity. One-Way ANOVA and t-tests were used to determine statistical significance (SigmaPlotTM). RESULTS Thrombin exposure induced a significant increase in apoptosis of human podocytes from 1.8% to 42.87% (p<0.05). Blockade of PAR-3 or PAR-4 resulted in a significant decrease in apoptosis [9.2% with hPAR-3 ab and 11.7% with hPAR-4ab] (p<0.05). Inhibition of thrombin enzymatic activity with hirudin, a direct thrombin inhibitor, also resulted in a decrease in apoptosis to 2.1% (p<0.05). In comparison to a control peptide, PAR-4 activation peptide significantly increased apoptosis from 1.7% to 40.1% (p<0.05), while PAR-3 activation peptide did not. Analogous results were seen with the phalloidin assay. Thrombin caused actin cytoskeletal changes, while PAR-3 and PAR-4 blockade ameliorated these changes. In addition, only activation with PAR-4 activating peptide resulted in loss of actin stress fibers. Figure 1 Figure 1. Figure 2 Figure 2. In rat podocytes human thrombin had a similar effect with increased apoptosis from 1% to 33.6% (p<0.05). We also demonstrated that this may be a PAR-mediated mechanism as blockade of PAR-1 and PAR-4 with specific antibodies ameliorated thrombin induced apoptosis [1.94% with PAR-1 ab and 3.5% with PAR-4ab] while blockade of PAR-2 and PAR-3 did not have a similar effect (p<0.05). Figure 3 Figure 3. CONCLUSIONS Thrombin-induced injury is mediated in a PAR-dependent fashion in both humans and rats. Specifically, in this in vitro model, thrombin induced apoptosis appears to be mediated in a PAR-3/-4 dependent manner in human podocytes but in a PAR-1/-4 manner in rat podocytes. Furthermore, these data suggest that thrombin induced podocyte injury may be mediated in a manner dependent on PAR heterodimerization. Our findings collectively suggest that interrupting thrombin-mediated podocyte injury may offer a novel future therapeutic approach to reduce podocyte injury in nephrotic syndrome. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 113 (02) ◽  
pp. 312-318 ◽  
Author(s):  
Gun Jörneskog ◽  
Anna Ågren ◽  
Per-Eric Lins ◽  
Håkan Wallén ◽  
Aleksandra Antovic ◽  
...  

SummaryThe increased risk of vascular complications in type 1 diabetes may in part be explained by changes in haemostatic function. In the present study, we investigated the fibrin clot properties in patients with type 1 diabetes in relation to sex and microvascular complications. The study included 236 patients (107 women) aged between 20–70 years and without any history of cardiovascular disease. Fibrin clot properties, assessed by determination of the permeability coefficient (Ks) and turbidimetric clotting and lysis assays, did not differ between men and women. Compared with men, women had worse glycaemic control as well as higher levels of prothrombin fragment 1+2 and peak thrombin generation in vitro, indicating increased thrombin generation both in vivo and in vitro. Subgroup analyses of patients younger than 30 years revealed less permeable fibrin clots and prolonged lysis time in females compared with age-matched men. Patients with microvascular complications had higher fibrinogen concentrations and denser and less permeable fibrin clots. Thus, we conclude that in vitro fibrin clot properties in patients with type 1 diabetes without cardiovascular disease are not different between the sexes, but associate with prevalence of microvascular complications. Tighter fibrin clot formation in younger women, as suggested by our results, may affect their future cardiovascular risk and should be investigated in a larger population.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Marjan Nokhbehsaim ◽  
Sigrun Eick ◽  
Andressa Vilas Boas Nogueira ◽  
Per Hoffmann ◽  
Stefan Herms ◽  
...  

Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1βand the periodontal microorganismP. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis.


1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


1990 ◽  
Vol 64 (03) ◽  
pp. 365-368 ◽  
Author(s):  
P Toulon ◽  
J M Bardin ◽  
N M Blumenfeld

SummaryHeparin cofactor II (HCII) is a thrombin inhibitor present in human plasma whose activity is enhanced by heparin. HCII exhibits important homologies with antithrombin III, the main heparin-enhanced thrombin inhibitor. Cases of recurrent thromboembolism have been recently reported in patients with HCII deficiency. Since the use of oral contraceptives (OC) is associated with an increased risk of thrombosis, the study of the plasma levels of HCII was undertaken in women taking contraceptive pills. Plasma HCII levels were found significantly higher in 62 women taking low-estrogen content OC (1.20 ± 0.28 U/ml) than in 62 age matched women not taking OC (0.94 ± 0.16 U/ml) or in 62 men (0.96 ± 0.19 U/ml). Significant correlations between HCII and fibrinogen levels were reported in the three groups. From the pooled data of the two control groups (men and women not taking OC), the normal range for plasma HCII levels was defined to be between 0.60 and 1.30 U/ml (mean ± 2 SD). Two cases of low HCII levels (<0.60 U/ml) were found in the control groups, but none in the group of women taking OC. It is concluded that the use of oral contraceptives is associated with a rise in HCII levels and that the screening for HCII deficiency has to be performed at distance of any OC therapy.


Sign in / Sign up

Export Citation Format

Share Document