scholarly journals NO Synthesis in Immune-Challenged Locust Hemocytes and Potential Signaling to the CNS

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 951
Author(s):  
Stella Bergmann ◽  
Jan-Phillipp Gerhards ◽  
Anne Schmitz ◽  
Stefanie C. Becker ◽  
Michael Stern

Similar to vertebrates, insects are exposed to a broad variety of pathogens. The innate insect immune system provides several response mechanisms such as phagocytosis, melanization, and the synthesis of antimicrobial or cytotoxic compounds. The cytotoxic nitric oxide (NO), which is also a neurotransmitter, is involved in the response to bacterial infections in various insects but has rarely been shown to be actually produced in hemocytes. We quantified the NO production in hemocytes of Locusta migratoria challenged with diverse immune stimuli by immunolabeling the by-product of NO synthesis, citrulline. Whereas in untreated adult locusts less than 5% of circulating hemocytes were citrulline-positive, the proportion rose to over 40% after 24 hours post injection of heat-inactivated bacteria. Hemocytes surrounded and melanized bacteria in locust nymphs by forming capsules. Such sessile hemocytes also produced NO. As in other insect species, activated hemocytes were found dorsally, close to the heart. In addition, we frequently observed citrulline-positive hemocytes and capsules near the ventral nerve cord. Neurites in the CNS of sterile locust embryos responded with elevation of the second messenger cGMP after contact with purified adult NO-producing hemocytes as revealed by immunofluorescence. We suggest that hemocytes can mediate a response in the CNS of an infected animal via the NO/cGMP signaling pathway.

2009 ◽  
Vol 297 (3) ◽  
pp. C750-C758 ◽  
Author(s):  
Beth Ann Murphy ◽  
Kurt A. Fakira ◽  
Zhentao Song ◽  
Annie Beuve ◽  
Vanessa H. Routh

The mechanisms by which glucose regulates the activity of glucose-inhibited (GI) neurons in the ventromedial hypothalamus (VMH) are largely unknown. We have previously shown that AMP-activated protein kinase (AMPK) increases nitric oxide (NO) production in VMH GI neurons. We hypothesized that AMPK-mediated NO signaling is required for depolarization of VMH GI neurons in response to decreased glucose. In support of our hypothesis, inhibition of neuronal nitric oxide synthase (nNOS) or the NO receptor soluble guanylyl cyclase (sGC) blocked depolarization of GI neurons to decreased glucose from 2.5 to 0.7 mM or to AMPK activation. Conversely, activation of sGC or the cell-permeable analog of cGMP, 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP), enhanced the response of GI neurons to decreased glucose, suggesting that stimulation of NO-sGC-cGMP signaling by AMPK is required for glucose sensing in GI neurons. Interestingly, the AMPK inhibitor compound C completely blocked the effect of sGC activation or 8-Br-cGMP, and 8-Br-cGMP increased VMH AMPKα2 phosphorylation. These data suggest that NO, in turn, amplifies AMPK activation in GI neurons. Finally, inhibition of the cystic fibrosis transmembrane regulator (CFTR) Cl− conductance blocked depolarization of GI neurons to decreased glucose or AMPK activation, whereas decreased glucose, AMPK activation, and 8-Br-cGMP increased VMH CFTR phosphorylation. We conclude that decreased glucose triggers the following sequence of events leading to depolarization in VMH GI neurons: AMPK activation, nNOS phosphorylation, NO production, and stimulation of sGC-cGMP signaling, which amplifies AMPK activation and leads to closure of the CFTR.


2005 ◽  
Vol 22 (6) ◽  
pp. 825-838 ◽  
Author(s):  
DOU YU ◽  
WILLIAM D. ELDRED

Nitric oxide (NO) is a free radical that is important in retinal signal transduction and cyclic guanosine monophosphate (cGMP) is a critical downstream messenger of NO. The NO/cGMP signaling pathway has been shown to modulate neurotransmitter release and gap junction coupling in horizontal cells and amacrine cells, and increase the gain of the light response in photoreceptors. However, many of the mechanisms controlling the production of NO and cGMP remain unclear. Previous studies have shown activation of NO/cGMP production in response to stimulation with N-methyl-d-aspartate (NMDA) or nicotine, and the differential modulation of cGMP production by GABAA and GABAC receptors (GABAARs and GABACRs). This study used cGMP immunocytochemistry and NO imaging to investigate how the inhibitory GABAergic and glycinergic systems modulate the production of NO and cGMP. Our data show that blocking glycine receptors (GLYR) with strychnine (STRY) produced moderate increases in cGMP-like immunoreactivity (cGMP-LI) in select types of amacrine and bipolar cells, and strong increases in NO-induced fluorescence (NO-IF). TPMPA, a selective GABACR antagonist, greatly reduced the increases in cGMP-LI stimulated by STRY, but did not influence the increase in NO-IF stimulated by STRY. Bicuculline (BIC), a GABAAR antagonist, however, enhanced the increases in both the cGMP-LI and NO-IF stimulated by STRY. CNQX, a selective antagonist for α-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid hydrobromide/kainic acid (AMPA/KA) receptors, eliminated both the increases in cGMP-LI and NO-IF stimulated by STRY, while MK801, a selective antagonist for NMDA receptors, slightly increased the cGMP-LI and slightly decreased the NO-IF stimulated by STRY. Finally, double labeling of NO-stimulated cGMP and either GLY or GABA indicated that cGMP predominantly colocalized with GLY. Taken together, these findings support the hypothesis that GLY and GABA interact in the regulation of the NO/cGMP signaling pathway, where GLY primarily inhibits NO production and GABA has a greater effect on cGMP production. Such interacting inhibitory pathways could shape the course of signal transduction of the NO/cGMP pathway under different physiological situations.


2010 ◽  
Vol 298 (1) ◽  
pp. H112-H118 ◽  
Author(s):  
Jin Qian ◽  
Qian Zhang ◽  
Jarrod E. Church ◽  
David W. Stepp ◽  
Radu D. Rudic ◽  
...  

Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), exerts control over vascular function via two distinct mechanisms, the activation of soluble guanylate cyclase (sGC)/cGMP-dependent signaling or through S-nitrosylation of proteins with reactive thiols ( S-nitrosylation). Previous studies in cultured endothelial cells revealed that eNOS targeted to the plasma membrane (PM) releases greater amounts of NO compared with Golgi tethered eNOS. However, the significance of eNOS localization to sGC-dependent or -independent signaling is not known. Here we show that PM-targeted eNOS, when expressed in human aortic endothelial cells (HAEC) and isolated blood vessels, increases sGC/cGMP signaling to a greater extent than Golgi-localized eNOS. The ability of local NO production to influence sGC-independent mechanisms was also tested by monitoring the secretion of Von Willebrand factor (vWF), which is tonically inhibited by the S-nitrosylation of N-ethylmaleimide sensitive factor (NSF). In eNOS “knockdown” HAECs, vWF secretion was attenuated to a greater degree by PM eNOS compared with a Golgi-restricted eNOS. Moreover, the PM-targeted eNOS induced greater S-nitrosylation of NSF vs. Golgi eNOS. To distinguish between the amount of NO generated and the intracellular location of synthesis, we expressed Golgi and PM-targeted calcium-insensitive forms of eNOS in HAEC. These constructs, which generate equal amounts of NO regardless of location, produced equivalent increases in cGMP in bioassays and equal inhibition of vWF secretion. We conclude that the greater functional effects of PM eNOS are due to the increased amount of NO produced rather than effects derived from the local synthesis of NO.


2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 65
Author(s):  
Byeoung-Kyu Choi ◽  
Duk-Yeon Cho ◽  
Dong-Kug Choi ◽  
Phan Thi Hoai Trinh ◽  
Hee Jae Shin

Two new phomaligols, deketo-phomaligol A (1) and phomaligol E (2), together with six known compounds (3–8) were isolated from the culture broth of the marine-derived fungus Aspergillus flocculosus. Compound 1 was first isolated as a phomaligol derivative possessing a five-membered ring. The structures and absolute configurations of the new phomaligols were determined by detailed analyses of mass spectrometry (MS), nuclear magnetic resonance (NMR) data, optical rotation values and electronic circular dichroism (ECD). In addition, the absolute configurations of the known compounds 3 and 4 were confirmed by chemical oxidation and comparison of optical rotation values. Isolated compounds at a concentration of 100 μM were screened for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Among the compounds, 4 showed moderate anti-neuroinflammatory effects with an IC50 value of 56.6 μM by suppressing the production of pro-inflammatory mediators in activated microglial cells without cytotoxicity.


2021 ◽  
Vol 22 (15) ◽  
pp. 8296
Author(s):  
Rüdiger Hardeland

Melatonin interacts in multiple ways with microglia, both directly and, via routes of crosstalk with astrocytes and neurons, indirectly. These effects of melatonin are of relevance in terms of antioxidative protection, not only concerning free-radical detoxification, but also in prevention of processes that cause, promote, or propagate oxidative stress and neurodegeneration, such as overexcitation, toxicological insults, viral and bacterial infections, and sterile inflammation of different grades. The immunological interplay in the CNS, with microglia playing a central role, is of high complexity and includes signaling toward endothelial cells and other leukocytes by cytokines, chemokines, nitric oxide, and eikosanoids. Melatonin interferes with these processes in multiple signaling routes and steps. In addition to canonical signal transduction by MT1 and MT2 melatonin receptors, secondary and tertiary signaling is of relevance and has to be considered, e.g., via the upregulation of sirtuins and the modulation of pro- and anti-inflammatory microRNAs. Many details concerning the modulation of macrophage functionality by melatonin are obviously also applicable to microglial cells. Of particular interest is the polarization toward M2 subtypes instead of M1, i.e., in favor of being anti-inflammatory at the expense of proinflammatory activities, which is well-documented in macrophages but also applies to microglia.


2021 ◽  
pp. 1-23
Author(s):  
Kosar Valaei ◽  
Javad Mehrabani ◽  
Alexei Wong

Abstract L-citrulline (L-Cit) is a nonessential amino acid that stimulates nitric oxide (NO) production and improves exercise performance by reducing muscle damage indices; however, the direct benefits of L-Cit on antioxidant markers are unclear. The aim of this study was to examine antioxidant responses to high-intensity interval exercise following acute L-Cit supplementation. Nine young men (21 ± 1 years) participated in a double-blind crossover study in which they received 12 g of L-Cit and placebo (PL) an hour prior to high-intensity interval exercise on two occasions, separated by a seven-day washout period. Blood samples were obtained before (PRE), immediately after (IP), 10 (10P), and 30 min after exercise (30P) from the cubital vein using standard procedures. Serum concentrations of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and NO metabolites (NOx) were measured. The exercise protocol significantly elevated SOD (p = 0.01) and GPx (p = 0.048) from PRE to 10P in the L-Cit group with greater changes than the PL group. CAT concentrations increased IP (p = 0.014) and remained elevated at 10P (p = 0.03) and 30P (p = 0.015) in both the L-Cit and PL conditions. NOx concentrations increased IP (p = 0.05) in the L-Cit group with greater changes than PL group in PRE to IP, PRE to 10P, and PRE to 30P (p < 0.05). Our data indicate that L-Cit supplementation (single 12 g dose pre-exercise) induces improvements in antioxidant markers following a session of high-intensity interval exercise in young men.


Sign in / Sign up

Export Citation Format

Share Document