scholarly journals Organic Control Strategies for Use in IPM of Invertebrate Pests in Apple and Pear Orchards

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1106
Author(s):  
Bethan Shaw ◽  
Csaba Nagy ◽  
Michelle T. Fountain

Growers of organic tree fruit face challenges in controlling some pests more easily suppressed by broad-spectrum insecticides in conventionally managed orchards. In recent decades, there has been a move towards organically growing varieties normally reliant on synthetic chemical pesticides (e.g., Gala), often to meet retailer/consumer demands. This inevitably makes crop protection in organic orchards more challenging, as modern varieties can be less tolerant to pests. In addition, there have been substantial reductions in plant protection product (PPP) approvals, resulting in fewer chemical options available for integrated pest management (IPM)-maintained orchards. Conversely, the organic management of fruit tree pests involves many practices that could be successfully implemented in conventionally grown crops, but which are currently not. These practices could also be more widely used in IPM-maintained orchards, alleviating the reliance on broad-spectrum PPP. In this review, we evaluate organic practices, with a focus on those that could be incorporated into conventional apple and pear production. The topics cover cultural control, biological control, physical and pest modifications. While the pests discussed mainly affect European species, many of the methods could be used to target other global pests for more environmentally sustainable practices.

2021 ◽  
pp. 187-222
Author(s):  
Rüdiger Hauschild ◽  
◽  
Willem J. Ravensberg ◽  

Microbial bioprotectants, like chemical pesticides, are required to pass a risk assessment and risk management procedure prior to use in plant protection, which in many countries is an obstacle for market access, in particular, the European Union. Administrative issues and data requirements, adapted from those used for chemicals, cause issues for both applicants and evaluators. These issues are reviewed and improvements are proposed. Biology should be the basis of the evaluation and data requirements for microorganisms, with an emphasis in this chapter on microbial compounds and testing methods. Political actions involving the use of pesticides are reviewed and recommendations are made on how to improve the system for microbial bioprotectants, including new uses. New legislation is suggested for all microorganisms used in agriculture and related uses based on the assumption that well-known microorganisms are of low risk to human health and the environment.


The application of preparations of biological origin in the protection system of soybean grown under conditions of intensive irrigated crop rotations conforms to the modern tendencies of science and production development. The use of them contributes to solving ecological, production and social-economic problems. The study presents the three-year research on the efficiency of systems protecting soybean from pests and diseases based on biological and chemical preparations. The research was conducted in typical soil and climate conditions of the South of Ukraine. Zonal agricultural methods and generally accepted research methodology were used. The purpose of the research was to create a soybean protection system based on preparations of biological origin, ensuring high productivity of high-quality products reducing a negative impact of the crop production on the environment. The study emphasizes that, under irrigated conditions of the South of Ukraine, the application of biological preparations has a positive impact on the indexes of growth, development and formation of the elements of soybean yield structure. There was an increase in the crop biological weight by 13.8 % and 22.1 % and the number of seeds per plant rose by 11.6 and 14.6 % as a consequence of eliminating harmful organisms with the plant protection systems. The larger ground mass was formed by medium-ripe varieties Danai and Svyatogor, on which the increase from protection measures was higher. Weight 1000 pcs. the seeds did not undergo significant changes. It is established that the larger seeds were formed by Danaya and Svyatogor varieties, in which the average weight is 1000 pcs. seeds were 142 and 136 g, respectively, while in the variety Diona this figure was 133 g. There was an increase in the height of the lowest pod when the total plant height rose. For medium-ripe varieties was characterized by a higher attachment of beans, where the highest values of this indicator acquired in the variety Svyatogor. The medium maturing soybean variety Danaia formed the maximum yield of 3.23 and 3.35 t/ha respectively, when biological and chemical protection systems were applied. The research establishes that the application of the bio-fungicide Psevdobakterin 2 (2.0 l/ha) in the crop protection system at the beginning of soybean flowering and the bio-fungicide Baktofit (2.5 l/ha) with the bio-insecticide Lepidotsid-BTU (10.0 l/ha) at the beginning of pod formation does not reduce the productivity of the soybean varieties under study considerably, when compared to the application of chemical preparations. The research determines that the soybean protection system under study ensures a decrease in the coefficient of soybean water uptake by 7.2-13.0 %, increasing the total water intake to an inconsiderable degree. Biologization of the soybean crop protection system leads to a reduction in production costs compared to the chemical protection system. Taking into account the needs for the collection of additional products, costs increase by an average of 1 thousand UAH/ha, while for chemical protection systems by 1.8 thousand UAH/ha. At the same time, the cost is reduced by 220-360 UAH/t and the profitability of growing crops is increased by 3.8-7.8 %. There has been a reduction in the burden of pesticides on the environment and the production of cleaner products. This indicates the prospect of using the biofungicides Pseudobacterin 2 and Bactophyte and the bioinsecticide Lepidocid-BTU on soybeans to protect plants from pests.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1818
Author(s):  
Francisco Hernández-Aparicio ◽  
Purificación Lisón ◽  
Ismael Rodrigo ◽  
José María Bellés ◽  
M. Pilar López-Gresa

New strategies of control need to be developed with the aim of economic and environmental sustainability in plant and crop protection. Metabolomics is an excellent platform for both understanding the complex plant–pathogen interactions and unraveling new chemical control strategies. GC-MS-based metabolomics, along with a phytohormone analysis of a compatible and incompatible interaction between tomato plants and Fusarium oxysporum f. sp. lycopersici, revealed the specific volatile chemical composition and the plant signals associated with them. The susceptible tomato plants were characterized by the over-emission of methyl- and ethyl-salicylate as well as some fatty acid derivatives, along with an activation of salicylic acid and abscisic acid signaling. In contrast, terpenoids, benzenoids, and 2-ethylhexanoic acid were differentially emitted by plants undergoing an incompatible interaction, together with the activation of the jasmonic acid (JA) pathway. In accordance with this response, a higher expression of several genes participating in the biosynthesis of these volatiles, such as MTS1, TomloxC,TomloxD, and AOS, as well as JAZ7, a JA marker gene, was found to be induced by the fungus in these resistant plants. The characterized metabolome of the immune tomato plants could lead to the development of new resistance inducers against Fusarium wilt treatment.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


2001 ◽  
Vol 37 (1) ◽  
pp. 37-51 ◽  
Author(s):  
E. KEBREAB ◽  
A. J. MURDOCH

A computer simulation model was developed to investigate strategies for control of the parasitic weed species of Orobanche. The model makes use of data from published literature and predicts infestation levels in a dynamic and deterministic way. It is predicted that sustainable control of the parasite can only be achieved by reducing the soil seed bank to levels of 1000–2000 seeds m−2 and maintaining it at that level in subsequent years. When cultural control methods such as hand weeding, trap/catch cropping, delayed planting, resistant cultivars and solarization were considered individually, a relatively high level of effectiveness was required to contain the soil seed bank. An integrated approach with a selection of appropriate cultural methods is therefore recommended for further testing and validation in the field. The simulations demonstrate the importance of preventing new seeds entering the soil seed bank and that although reducing the soil seed bank may not increase yield for the first few years, it will ultimately increase production.


2020 ◽  
Vol 10 (4) ◽  
pp. 580-593
Author(s):  
M A. Bryzgalina ◽  

The demand for organic food is a prerequisite for the formation and development of organic agriculture, and the task of promoting it on domestic and foreign markets is among the priority ones. A serious problem in the sale of this category of goods to the domestic food markets of the country is the distrust of potential consumers. It is possible to solve this problem through certification and the use of a well-known brand. Certification of manufacturers of environmentally friendly products is a rather complicated and expensive procedure, therefore it is not available for most agricultural producers in the Saratov region. However, basing on the fact that today the task of developing the organic agriculture industry is set at the level of the government of the country, it is possible to solve this problem with the support of the state. The article examines the enterprises of the Saratov region of various legal forms, which do not use fertilizers and chemical means of crop protection in the production of crop production. Using the example of agricultural organizations and farms in the region, a mechanism for subsidizing certification of the most promising producers of organic wheat (winter and spring) is proposed, which includes the allocation of targeted subsidies for its implementation. As a criterion for the selection of applicants for this type of state support, as well as the distribution of budgetary resources between them, it is proposed to use the average indicator (potential) of the annual volume of organic production in the work. As a result, direct participants in certification subsidies were selected from the compiled sample of the studied enterprises that do not use chemical plant protection products and mineral fertilizers and the total annual volume of their marketable wheat was determined. The author determined the maximum cost of quality confirmation procedures for one enterprise, taking into account the increasing coefficients per one day of inspection, and also established the largest amount of budgetary resources that may be spent on the implementation of the proposed measure. In order to evaluate the effectiveness of the proposed certification subsidy mechanism, the author developed formulas for determining the selling price of products in the promising organic segment, taking into account its increase by the level of premium premiums.


2013 ◽  
Vol 5 (2) ◽  
pp. 378-381 ◽  
Author(s):  
Gokil Prasad Gangwar

Though the pesticides have adverse effects but they still are very important in crop protection. Hence, present study on compatibility of fungal bioagent (Trichoderma harzianum) of bacterial leaf blight of rice with chemical pesticides which are commonly used in rice cultivation was carried out with aim to look the possibilities of integrating biological control with chemical control to manage bacterial leaf blight of rice effectively. All the chemical pesticides (fungicides, antibiotic, insecticides and herbicides) exhibited varying adverse effect on mycelial growth of T. harzianum but none of these was antisporulant. Among fungicides and antibiotic, copper oxychloride and streptocycline was compatible with T. harzianum at all concentrations (2000, 1000, 500 and 250 ppm) but mancozeb exhibited compatibility only on lower concentrations (500 and 250 ppm). All insecticides and herbicides were compatible with T. harzianum at all concentrations (2000, 1000, 500 and 250 ppm). Further studies are required in this area of research.


Author(s):  
A. A. Oso ◽  
G. O. Awe

Aim: Information on the influence of water availability during different seasons of rainfed or irrigated agriculture as it relates to insect pest population build-up in crops could assist in the development of integrated pest management. A study was therefore conducted to investigate effects of spacing, pest infestation and control on cucumber under rainfed and irrigated conditions. Place and Duration of Study: At the Teaching and Research Farm, Ekiti State University, Ado Ekiti, Nigeria during the 2016/2017 rainy and dry seasons. Methodology: The experiment was laid out using randomized complete block design (RCBD) in a split-plot arrangement in five replications, with spacing (60 x 60 cm, 60 x 90 cm and 60 x 120 cm) as the main plot treatments and the sub-plot treatments were different pest control strategies. The pest control strategies include synthetic insecticide (Lambda-cyhalothrin), botanical insecticide (Anogeissus leiocarpus) and control. Growth parameters and yield attributes were recorded. Insect pest occurrence, their build-up and percentage infestation on cucumber and the efficacy of the management strategies were monitored. Results: The results showed that yield was enhanced in irrigated system with the widest spacing of 60 x 120 cm botanical treatment interaction. Bemisia tabaci was the most prominent insect pest attacking cucumber under irrigated system. Conclusion: Other cultural control practices such as the use of trap crops with little or no financial implication should also be added to botanical pesticides as an integrated pest management tactic for effective management and control of the pest.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Patrice A. Marchand

Abstract Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 established a framework for Community action to bring about the sustainable use of pesticides and encourage low concern biorationals. Basic substances described in article 23 of EC phytopharmaceutical Regulation No 1107/2009 consist of a new operative category for crop protection products with 16 substances approved so far. Another status, ruled by article 22 is also operative with 11 approved low-risk substances (see EU pesticide database). Now small and medium-sized enterprises (SMEs) have the opportunity to register biorationals at the EU level in one of the two categories. Our institute previously provided technical expertise on how to complete the Basic Substance Application (BSA), together with a description of first results. However it is clear that there is a need for a shorter survey of the two parallel procedures for SMEs. Here we provide a concise sequence of the necessary steps for SMEs, including strategic approach, a rapid steps description, a timeframe for the global pathway, up to the final step, after approval by the Plants, Animals, Food and Feed Standing Committee (PAFF). We present in detail the advantages and limitations of the two statutes. The introduction of approved substances into organic farming is also discussed. Currently basic and low-risk substance pathways are now accessible for biorationals handled by SMEs. Therefore, the option is open for SMEs to seek a possibly low-risk active substances endorsement with market authorizations or a basic substance approval with no plant protection product claims depending on the selected strategy.


Sign in / Sign up

Export Citation Format

Share Document