scholarly journals A Review of the Impact of Alterations in Gut Microbiome on the Immunopathogenesis of Ocular Diseases

2021 ◽  
Vol 10 (20) ◽  
pp. 4694
Author(s):  
Yashan Bu ◽  
Yau-Kei Chan ◽  
Ho-Lam Wong ◽  
Stephanie Hiu-Ling Poon ◽  
Amy Cheuk-Yin Lo ◽  
...  

Recent studies have highlighted the association between ocular diseases and microbiota profiles of the host intestinal tract and oral cavity. There is mounting evidence supporting the existence of a ‘gut–eye axis’, whereby changes in gut microbiome alter host immunity, with consequential implications for ocular health and disease. In this review, we examined recent published findings on the association between gut microbiome and ocular morbidity, based on 25 original articles published between 2011 to 2020. The review included both clinical and in vivo animal studies, with particular focus on the influence of the microbiome on host immunity and metabolism. Significant associations between altered intestinal microbiome and specific ocular diseases and pathological processes, including Behçet’s syndrome, autoimmune uveitis, age-related macular degeneration, choroidal neovascularization, bacterial keratitis, and Sjögren-like lacrimal keratoconjunctivitis have been demonstrated. Furthermore, alterations in the gut microbiome resulted in quantifiable changes in the host immune response, suggesting immunopathogenesis as the basis for the link between intestinal dysbiosis and ocular disease. We also examined and compared different techniques used in the identification and quantification of gut microorganisms. With our enhanced understanding of the potential role of gut commensals in ophthalmic disease, the stage is set for further studies on the underlying mechanisms linking the gut microbiome, the host immune response, and the pathogenesis of ophthalmic disease.

2019 ◽  
Vol 24 (40) ◽  
pp. 4726-4741 ◽  
Author(s):  
Orathai Tangvarasittichai ◽  
Surapon Tangvarasittichai

Background: Oxidative stress is caused by free radicals or oxidant productions, including lipid peroxidation, protein modification, DNA damage and apoptosis or cell death and results in cellular degeneration and neurodegeneration from damage to macromolecules. Results: Accumulation of the DNA damage (8HOdG) products and the end products of LPO (including aldehyde, diene, triene conjugates and Schiff’s bases) were noted in the research studies. Significantly higher levels of these products in comparison with the controls were observed. Oxidative stress induced changes to ocular cells and tissues. Typical changes include ECM accumulation, cell dysfunction, cell death, advanced senescence, disarrangement or rearrangement of the cytoskeleton and released inflammatory cytokines. It is involved in ocular diseases, including keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, cataract, age-related macular degeneration, primary open-angle glaucoma, retinal light damage, and retinopathy of prematurity. These ocular diseases are the cause of irreversible blindness worldwide. Conclusions: Oxidative stress, inflammation and autophagy are implicated in biochemical and morphological changes in these ocular tissues. The development of therapy is a major target for the management care of these ocular diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elżbieta Krytkowska ◽  
Aleksandra Grabowicz ◽  
Katarzyna Mozolewska-Piotrowska ◽  
Zofia Ulańczyk ◽  
Krzysztof Safranow ◽  
...  

AbstractDisturbances in choroidal microcirculation may lead to the onset and progression of age-related macular degeneration (AMD). We aimed to assess changes in the choroidal volume and thickness in the macular region in AMD eyes and to investigate whether coexisting vascular risk factors alter choroidal status. We enrolled 354 AMD patients (175 dry, 179 wet AMD) and 121 healthy controls. All participants underwent a complete ophthalmologic examination and assessment of choroidal thickness and volume. A multivariate analysis adjusted for age, sex, and smoking status revealed that wet AMD was an independent factor associated with higher average thickness of the central ring area (ATC) and average volume of the central ring area (AVC) and lower choroidal vascularity index (CVI) compared to controls (β =  + 0.18, p = 0.0007, β =  + 0.18, p = 0.0008, respectively) and to dry AMD (β =  + 0.17, p = 0.00003 for both ATC and AVC and β =  − 0.30 p < 0.0001 for CVI). ATC, AVC and average volume (AV) were lower in AMD patients with hypertension and ischaemic heart disease (IHD). The duration of hypertension was inversely correlated with ATC, AVC and AV (Rs =  − 0.13, p < 0.05; Rs =  − 0.12; p < 0.05, Rs =  − 0.12; p < 0.05, respectively) while IHD duration negatively correlated with AV (Rs =  − 0.15, p < 0.05). No such associations were observed in the control group. Our findings show that the choroidal vascular system in eyes with AMD is much more susceptible to damage in the presence than in the absence of systemic vascular disease.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Annamaria Tisi ◽  
Marco Feligioni ◽  
Maurizio Passacantando ◽  
Marco Ciancaglini ◽  
Rita Maccarone

The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch’s membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.


2021 ◽  
Vol 10 (10) ◽  
pp. 2072
Author(s):  
Phoebe Lin ◽  
Scott M. McClintic ◽  
Urooba Nadeem ◽  
Dimitra Skondra

Blindness from age-related macular degeneration (AMD) is an escalating problem, yet AMD pathogenesis is incompletely understood and treatments are limited. The intestinal microbiota is highly influential in ocular and extraocular diseases with inflammatory components, such as AMD. This article reviews data supporting the role of the intestinal microbiota in AMD pathogenesis. Multiple groups have found an intestinal dysbiosis in advanced AMD. There is growing evidence that environmental factors associated with AMD progression potentially work through the intestinal microbiota. A high-fat diet in apo-E-/- mice exacerbated wet and dry AMD features, presumably through changes in the intestinal microbiome, though other independent mechanisms related to lipid metabolism are also likely at play. AREDS supplementation reversed some adverse intestinal microbial changes in AMD patients. Part of the mechanism of intestinal microbial effects on retinal disease progression is via microbiota-induced microglial activation. The microbiota are at the intersection of genetics and AMD. Higher genetic risk was associated with lower intestinal bacterial diversity in AMD. Microbiota-induced metabolite production and gene expression occur in pathways important in AMD pathogenesis. These studies suggest a crucial link between the intestinal microbiota and AMD pathogenesis, thus providing a novel potential therapeutic target. Thus, the need for large longitudinal studies in patients and germ-free or gnotobiotic animal models has never been more pressing.


Author(s):  
Luciano Mesquite Simmo ◽  
Carissa Fouad Ibrahim ◽  
Senice Alvarenga Rodrigues Silva ◽  
Thai Nunes Andrade ◽  
Doora Faleiros Leite ◽  
...  

Objective: To compare the vision-targeted health related quality of life (HRQOL) between neuro-ophthalmological patients and other eye diseases by the National Eye Institute 25-Item Visual Function Questionnaire. Methods: Cross sectional study with a control group and patients with the following pathologies: primary open-angle glaucoma (POAG), diabetic retinopathy (DR), age-related macular degeneration (ARMD), non-arteritic ischemic optic neuropathy (NAION), intracranial hypertension (IH), optic neuritis (ON), ptosis and cataract. Results: All comparisons of the subscales scores among the control group and the patient groups were statistically significant (p<0.05) except for “ocular pain” (p=0.160), “social functioning” (p=0.052) and “peripheral vision” (p=0.112). The control group had the best scores across all dimensions of the NEI VFQ-25. Interestingly, the ARMD and cataract groups presented the best and worst total scores of NEI VFQ-25, respectively. The lowest subscales scores were found in the cataract, in the NAION/ON, and in the POAG groups. Finally, the comparison between the NAION/ON/IH patients and the other eye diseases did not show statistical significance in any subscale. Conclusion: The NEI VFQ-25 showed the impact of various eye conditions in vision-targeted HRQOL, and no difference was measured between neuro-ophthalmological patients and other eye diseases


2018 ◽  
Vol 244 (6) ◽  
pp. 419-429 ◽  
Author(s):  
Adam D Baim ◽  
Asadolah Movahedan ◽  
Asim V Farooq ◽  
Dimitra Skondra

Progress in microbiome research has accelerated in recent years. Through the use of 16S rRNA assays and other genomic sequencing techniques, researchers have provided new insights about the communities of microorganisms that inhabit human and animal hosts. There is mounting evidence about the importance of these ‘microbiotas’ in a wide variety of disease states, suggesting potential targets for preventative and therapeutic interventions. Until recently, however, the microbiome received relatively little attention in ophthalmology. This review explores emerging research on the roles that ocular and extraocular microbiotas may play in the pathogenesis and treatment of ophthalmic diseases. These include diseases of the ocular surface as well as autoimmune uveitis, age-related macular degeneration, and primary open angle glaucoma. Many questions remain about the potential impacts of microbiome research on the diagnosis, treatment, and prevention of ophthalmic disease. In light of current findings, we suggest directions for future study as this exciting area of research continues to expand. Impact statement This review describes a growing body of research on relationships between the microbiome and eye disease. Several groups have investigated the microbiota of the ocular surface; dysregulation of this delicate ecosystem has been associated with a variety of pro-inflammatory states. Other research has explored the effects of the gastrointestinal microbiota on ophthalmic diseases. Characterizing the ways these microbiotas influence ophthalmic homeostasis and pathogenesis may lead to research on new techniques for managing ophthalmic disease.


2021 ◽  
Vol 8 (1) ◽  
pp. 19-25
Author(s):  
Iwona Kusz vel Sobczuk ◽  
Anna Święch

Aim: The aim of the article was to discuss the role of balanced supplementation in diet of age-related macular degeneration patients. Methods: This review was carried out using comprehensive and systematic literature reports on the role of supplementation of vitamin D, vitamin C, vitamin E, vitamin B6, vitamin B12, zinc, lutein, zeaxanthin, omega-3 acid and folic acid in the prevention of AMD. Results: Vitamins, minerals and carotenoids are essential for the proper retinal function over an inflammation and immune response modulation. Conclusions: Vitamins, minerals and carotenoids discussed in the article have anti-inflammatory and antioxidative properties in the management of AMD progression. Accordingly, it is relevant to assure the appropriate level of these nutrients in a diet of AMD patients.


Retina ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kelvin Yi Chong Teo ◽  
Vuong Nguyen ◽  
Chui Ming Gemmy Cheung ◽  
Jennifer J Arnold ◽  
Fred K. Chen ◽  
...  

Author(s):  
Milad Ahani-Nahayati ◽  
Vahid Niazi ◽  
Alireza Moradi ◽  
Bahareh Pourjabbar ◽  
Reza Roozafzoon ◽  
...  

: As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3082
Author(s):  
M. Victoria Moreno-Arribas ◽  
Begoña Bartolomé ◽  
José L. Peñalvo ◽  
Patricia Pérez-Matute ◽  
Maria José Motilva

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual’s oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.


Sign in / Sign up

Export Citation Format

Share Document