scholarly journals Prediction of Adverse Events in Stable Non-Variceal Gastrointestinal Bleeding Using Machine Learning

2020 ◽  
Vol 9 (8) ◽  
pp. 2603 ◽  
Author(s):  
Dong-Woo Seo ◽  
Hahn Yi ◽  
Beomhee Park ◽  
Youn-Jung Kim ◽  
Dae Ho Jung ◽  
...  

Clinical risk-scoring systems are important for identifying patients with upper gastrointestinal bleeding (UGIB) who are at a high risk of hemodynamic instability. We developed an algorithm that predicts adverse events in patients with initially stable non-variceal UGIB using machine learning (ML). Using prospective observational registry, 1439 out of 3363 consecutive patients were enrolled. Primary outcomes included adverse events such as mortality, hypotension, and rebleeding within 7 days. Four machine learning algorithms, namely, logistic regression with regularization (LR), random forest classifier (RF), gradient boosting classifier (GB), and voting classifier (VC), were compared with the Glasgow–Blatchford score (GBS) and Rockall scores. The RF model showed the highest accuracies and significant improvement over conventional methods for predicting mortality (area under the curve: RF 0.917 vs. GBS 0.710), but the performance of the VC model was best in hypotension (VC 0.757 vs. GBS 0.668) and rebleeding within 7 days (VC 0.733 vs. GBS 0.694). Clinically significant variables including blood urea nitrogen, albumin, hemoglobin, platelet, prothrombin time, age, and lactate were identified by the global feature importance analysis. These results suggest that ML models will be useful early predictive tools for identifying high-risk patients with initially stable non-variceal UGIB admitted at an emergency department.

Author(s):  
Isaac Kofi Nti ◽  
◽  
Owusu N yarko-Boateng ◽  
Justice Aning

The numerical value of k in a k-fold cross-validation training technique of machine learning predictive models is an essential element that impacts the model’s performance. A right choice of k results in better accuracy, while a poorly chosen value for k might affect the model’s performance. In literature, the most commonly used values of k are five (5) or ten (10), as these two values are believed to give test error rate estimates that suffer neither from extremely high bias nor very high variance. However, there is no formal rule. To the best of our knowledge, few experimental studies attempted to investigate the effect of diverse k values in training different machine learning models. This paper empirically analyses the prevalence and effect of distinct k values (3, 5, 7, 10, 15 and 20) on the validation performance of four well-known machine learning algorithms (Gradient Boosting Machine (GBM), Logistic Regression (LR), Decision Tree (DT) and K-Nearest Neighbours (KNN)). It was observed that the value of k and model validation performance differ from one machine-learning algorithm to another for the same classification task. However, our empirical suggest that k = 7 offers a slight increase in validations accuracy and area under the curve measure with lesser computational complexity than k = 10 across most MLA. We discuss in detail the study outcomes and outline some guidelines for beginners in the machine learning field in selecting the best k value and machine learning algorithm for a given task.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu-Tai Lo ◽  
Jay Chie-hen Liao ◽  
Mei-Hua Chen ◽  
Chia-Ming Chang ◽  
Cheng-Te Li

Abstract Background Early unplanned hospital readmissions are associated with increased harm to patients, increased medical costs, and negative hospital reputation. With the identification of at-risk patients, a crucial step toward improving care, appropriate interventions can be adopted to prevent readmission. This study aimed to build machine learning models to predict 14-day unplanned readmissions. Methods We conducted a retrospective cohort study on 37,091 consecutive hospitalized adult patients with 55,933 discharges between September 1, 2018, and August 31, 2019, in an 1193-bed university hospital. Patients who were aged < 20 years, were admitted for cancer-related treatment, participated in clinical trial, were discharged against medical advice, died during admission, or lived abroad were excluded. Predictors for analysis included 7 categories of variables extracted from hospital’s medical record dataset. In total, four machine learning algorithms, namely logistic regression, random forest, extreme gradient boosting, and categorical boosting, were used to build classifiers for prediction. The performance of prediction models for 14-day unplanned readmission risk was evaluated using precision, recall, F1-score, area under the receiver operating characteristic curve (AUROC), and area under the precision–recall curve (AUPRC). Results In total, 24,722 patients were included for the analysis. The mean age of the cohort was 57.34 ± 18.13 years. The 14-day unplanned readmission rate was 1.22%. Among the 4 machine learning algorithms selected, Catboost had the best average performance in fivefold cross-validation (precision: 0.9377, recall: 0.5333, F1-score: 0.6780, AUROC: 0.9903, and AUPRC: 0.7515). After incorporating 21 most influential features in the Catboost model, its performance improved (precision: 0.9470, recall: 0.5600, F1-score: 0.7010, AUROC: 0.9909, and AUPRC: 0.7711). Conclusions Our models reliably predicted 14-day unplanned readmissions and were explainable. They can be used to identify patients with a high risk of unplanned readmission based on influential features, particularly features related to diagnoses. The operation of the models with physiological indicators also corresponded to clinical experience and literature. Identifying patients at high risk with these models can enable early discharge planning and transitional care to prevent readmissions. Further studies should include additional features that may enable further sensitivity in identifying patients at a risk of early unplanned readmissions.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1089
Author(s):  
Sung-Hee Kim ◽  
Chanyoung Jeong

This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO2) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO2 nanostructures’ thicknesses by performing anodization. We successfully grew TiO2 films with different thicknesses by one-step anodization in ethylene glycol containing NH4F and H2O at applied voltage differences ranging from 10 V to 100 V at various anodization durations. We found that the thicknesses of TiO2 nanostructures are dependent on anodization voltages under time differences. Therefore, we tested the feasibility of applying machine learning algorithms to predict the deformation of TiO2. As the characteristics of TiO2 changed based on the different experimental conditions, we classified its surface pore structure into two categories and four groups. For the classification based on granularity, we assessed layer creation, roughness, pore creation, and pore height. We applied eight machine learning techniques to predict classification for binary and multiclass classification. For binary classification, random forest and gradient boosting algorithm had relatively high performance. However, all eight algorithms had scores higher than 0.93, which signifies high prediction on estimating the presence of pore. In contrast, decision tree and three ensemble methods had a relatively higher performance for multiclass classification, with an accuracy rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and multiclass classifications. We believe that these results show that we can apply machine learning techniques to predict surface quality improvement, leading to smart manufacturing technology to better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Junyi Li ◽  
Huinian Li ◽  
Xiao Ye ◽  
Li Zhang ◽  
Qingzhe Xu ◽  
...  

Abstract Background The prediction of long non-coding RNA (lncRNA) has attracted great attention from researchers, as more and more evidence indicate that various complex human diseases are closely related to lncRNAs. In the era of bio-med big data, in addition to the prediction of lncRNAs by biological experimental methods, many computational methods based on machine learning have been proposed to make better use of the sequence resources of lncRNAs. Results We developed the lncRNA prediction method by integrating information-entropy-based features and machine learning algorithms. We calculate generalized topological entropy and generate 6 novel features for lncRNA sequences. By employing these 6 features and other features such as open reading frame, we apply supporting vector machine, XGBoost and random forest algorithms to distinguish human lncRNAs. We compare our method with the one which has more K-mer features and results show that our method has higher area under the curve up to 99.7905%. Conclusions We develop an accurate and efficient method which has novel information entropy features to analyze and classify lncRNAs. Our method is also extendable for research on the other functional elements in DNA sequences.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


2021 ◽  
Vol 27 ◽  
pp. 107602962199118
Author(s):  
Logan Ryan ◽  
Samson Mataraso ◽  
Anna Siefkas ◽  
Emily Pellegrini ◽  
Gina Barnes ◽  
...  

Deep venous thrombosis (DVT) is associated with significant morbidity, mortality, and increased healthcare costs. Standard scoring systems for DVT risk stratification often provide insufficient stratification of hospitalized patients and are unable to accurately predict which inpatients are most likely to present with DVT. There is a continued need for tools which can predict DVT in hospitalized patients. We performed a retrospective study on a database collected from a large academic hospital, comprised of 99,237 total general ward or ICU patients, 2,378 of whom experienced a DVT during their hospital stay. Gradient boosted machine learning algorithms were developed to predict a patient’s risk of developing DVT at 12- and 24-hour windows prior to onset. The primary outcome of interest was diagnosis of in-hospital DVT. The machine learning predictors obtained AUROCs of 0.83 and 0.85 for DVT risk prediction on hospitalized patients at 12- and 24-hour windows, respectively. At both 12 and 24 hours before DVT onset, the most important features for prediction of DVT were cancer history, VTE history, and internal normalized ratio (INR). Improved risk stratification may prevent unnecessary invasive testing in patients for whom DVT cannot be ruled out using existing methods. Improved risk stratification may also allow for more targeted use of prophylactic anticoagulants, as well as earlier diagnosis and treatment, preventing the development of pulmonary emboli and other sequelae of DVT.


2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen ◽  
Bor-Shiun Lin ◽  
Uma Seeboonruang

Although machine learning has been extensively used in various fields, it has only recently been applied to soil erosion pin modeling. To improve upon previous methods of quantifying soil erosion based on erosion pin measurements, this study explored the possible application of ensemble machine learning algorithms to the Shihmen Reservoir watershed in northern Taiwan. Three categories of ensemble methods were considered in this study: (a) Bagging, (b) boosting, and (c) stacking. The bagging method in this study refers to bagged multivariate adaptive regression splines (bagged MARS) and random forest (RF), and the boosting method includes Cubist and gradient boosting machine (GBM). Finally, the stacking method is an ensemble method that uses a meta-model to combine the predictions of base models. This study used RF and GBM as the meta-models, decision tree, linear regression, artificial neural network, and support vector machine as the base models. The dataset used in this study was sampled using stratified random sampling to achieve a 70/30 split for the training and test data, and the process was repeated three times. The performance of six ensemble methods in three categories was analyzed based on the average of three attempts. It was found that GBM performed the best among the ensemble models with the lowest root-mean-square error (RMSE = 1.72 mm/year), the highest Nash-Sutcliffe efficiency (NSE = 0.54), and the highest index of agreement (d = 0.81). This result was confirmed by the spatial comparison of the absolute differences (errors) between model predictions and observations using GBM and RF in the study area. In summary, the results show that as a group, the bagging method and the boosting method performed equally well, and the stacking method was third for the erosion pin dataset considered in this study.


Hypertension ◽  
2021 ◽  
Vol 78 (5) ◽  
pp. 1595-1604
Author(s):  
Fabrizio Buffolo ◽  
Jacopo Burrello ◽  
Alessio Burrello ◽  
Daniel Heinrich ◽  
Christian Adolf ◽  
...  

Primary aldosteronism (PA) is the cause of arterial hypertension in 4% to 6% of patients, and 30% of patients with PA are affected by unilateral and surgically curable forms. Current guidelines recommend screening for PA ≈50% of patients with hypertension on the basis of individual factors, while some experts suggest screening all patients with hypertension. To define the risk of PA and tailor the diagnostic workup to the individual risk of each patient, we developed a conventional scoring system and supervised machine learning algorithms using a retrospective cohort of 4059 patients with hypertension. On the basis of 6 widely available parameters, we developed a numerical score and 308 machine learning-based models, selecting the one with the highest diagnostic performance. After validation, we obtained high predictive performance with our score (optimized sensitivity of 90.7% for PA and 92.3% for unilateral PA [UPA]). The machine learning-based model provided the highest performance, with an area under the curve of 0.834 for PA and 0.905 for diagnosis of UPA, with optimized sensitivity of 96.6% for PA, and 100.0% for UPA, at validation. The application of the predicting tools allowed the identification of a subgroup of patients with very low risk of PA (0.6% for both models) and null probability of having UPA. In conclusion, this score and the machine learning algorithm can accurately predict the individual pretest probability of PA in patients with hypertension and circumvent screening in up to 32.7% of patients using a machine learning-based model, without omitting patients with surgically curable UPA.


Sign in / Sign up

Export Citation Format

Share Document