scholarly journals Generation of Efficient Iso-Planar Printing Path for Multi-Axis FDM Printing

2021 ◽  
Vol 5 (2) ◽  
pp. 59
Author(s):  
Danjie Bi ◽  
Fubao Xie ◽  
Kai Tang

The emerging multi-axis fused deposition modeling (FDM) printing process is a powerful technology for fabricating complicated 3D models that otherwise would require extensive support structures or suffer the severe stair-case effect if printed on a conventional three-axis FDM printer. However, because of the addition of two rotary axes which enables the printing nozzle to change its orientation continuously, and the fact that the printing layer is now curved, determining how a nozzle printing path to cover the layer becomes a non-trivial issue, since the rotary axes of the printer in general have a much worse kinematic capacity than the linear axes. In this paper, specifically targeting robotic printing, we first propose an efficiency indicator called the material deposition rate which considers both the local geometry of the layer surface and the kinematic capacities of the printer. By maximizing this indicator globally, a best drive plane direction is found, and then the classic iso-planar method is adopted to generate the printing path for the layer, which not only upholds the specified printing quality but also strives to maximize the kinematic capacities of the printer to minimize the total printing time. Preliminary experiments in both computer simulation and physical printing are carried out and the results give a positive confirmation on the proposed method.

2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Nor Aiman Sukindar ◽  
M. K. A. Ariffin ◽  
B. T. Hang Tuah Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Fused deposition modeling (FDM) is one of the Rapid Prototyping (RP) technologies. The 3D Printer has been widely used in the fabrication of 3D products. One of the main issues has been to obtain a high quality for the finished parts. The present study focuses on the effect of nozzle diameter in terms of pressure drop, geometrical error as well as extrusion time. While using polylactic acid (PLA) as a material, the research was conducted using Finite Element Analysis (FEA) by manipulating the nozzle diameter, and the pressure drop along the liquefier was observed. The geometrical error and printing time were also calculated by using different nozzle diameters. Analysis shows that the diameter of the nozzle significantly affects the pressure drop along the liquefier which influences the consistency of the road width thus affecting the quality of the product’s finish. The vital aspect is minimizing the pressure drop to be as low as possible, which will lead to a good quality final product. The results from the analysis demonstrate that a 0.2 mm nozzle diameter contributes the highest pressure drop, which is not within the optimum range. In this study, by considering several factors including pressure drop, geometrical error and printing time, a 0.3 mm nozzle diameter has been suggested as being in the optimum range for extruding PLA material using open-source 3D printing. The implication of this result is valuable for a better understanding of the melt flow behavior of the PLA material and for choosing the optimum nozzle diameter for 3D printing.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2266 ◽  
Author(s):  
Welf-Guntram Drossel ◽  
Jörn Ihlemann ◽  
Ralf Landgraf ◽  
Erik Oelsch ◽  
Marek Schmidt

The dissemination and use of additive processes are growing rapidly. Nevertheless, for the material class of elastomers made of vulcanizable rubber, there is still no technical solution for producing them using 3D printing. Therefore, this paper deals with the basic investigations to develop an approach for rubber printing. For this purpose, a fused deposition modeling (FDM) 3D printer is modified with a screw extruder. Tests are carried out to identify the optimal printing parameters. Afterwards, test prints are performed for the deposition of rubber strands on top of each other and for the fabrication of simple two-dimensional geometries. The material behavior during printing, the printing quality as well as occurrences of deviations in the geometries are evaluated. The results show that the realization of 3D rubber printing is possible. However, there is still a need for research to stabilize the layers during the printing process. Additionally, further studies are necessary to determine the optimum parameters for traverse speed and material discharge, especially on contours.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989619 ◽  
Author(s):  
Zhiyong Li ◽  
Dawei Zhang ◽  
Liangchen Shao ◽  
Shanling Han

To improve the blockage and printing quality of the color mixing nozzle of fused deposition modeling color 3D printer, the feed parameters of fused deposition modeling color 3D printer were studied by vibration test. The acceleration sensor was fixed up the color mixing nozzle to analyze the vertical vibration of the nozzle. The vibration test of different feed speed, torque, and material were performed under the actual printing condition. Vertical vibration of the nozzle was characterized by an acceleration sensor. The comparative analysis of the actual testing results indicates that the optimum feed parameters are feed torque of triple torque extruder, feed speed of 20 mm/s, and feed material of ABS. Further analysis shows that higher feed torque can be used to improve the printing quality of the color mixing nozzle. The appropriate feed speed of the color 3D printer can not only reduce the accumulation of wire material at a lower speed but also reduce the blockage caused by too-high feed speed. It is proposed that the feed material with smaller flow behavior index and no phase transition in the melting process shows smaller vibration acceleration amplitude.


2015 ◽  
Vol 667 ◽  
pp. 181-186 ◽  
Author(s):  
Ai Qiong Pan ◽  
Zi Fan Huang ◽  
Rui Jie Guo ◽  
Jun Liu

Fused deposition modeling (FDM) is one of the most widely used technologies in rapid prototyping. On the principle of layered manufacturing, the melted polymer filament is extruded and formed. In order to achieve transition from nonfunctional prototypes to functional prototypes of FDMed models, using the RepRap Kossel delta 3D printer and 1.75mm diameter polylactic acid (PLA) filament, it was analyzed that the effects of the nozzle moving rate and slice thickness on adhesive strength based on the existing technology research by orthogonal test. The experiment results indicated that adhesive strength of filament increased both with the nozzle moving rate and with its slice thickness. The latter induced increase more significantly. Finally, comprehensive experiments had been performed to quantitatively study the adhesive strength variation with the filling rate, which provides data reference for setting proper filling rate. Reasonable filling rate setting can not only satisfy the strength requirement without debasement of printing quality, but also reduce filament consumption, improve the manufacturing efficiency and provide important instruction significance for actual printing.


2021 ◽  
Vol 5 (1) ◽  
pp. 48-55
Author(s):  
Adriana Kovalcik

AbstractIn the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.


2021 ◽  
Vol 1037 ◽  
pp. 55-64
Author(s):  
Durwesh Jhodkar ◽  
Ankit Nayak ◽  
Kapil Gupta

Fused deposition modeling (FDM) or 3D printing is one of the promising techniques widely preferred to fabricate complex and customized 3D objects or prototypes for various engineering and non-engineering applications. With the growing demands of customized prototypes, researchers are facing a major challenge for maintaining effective part quality with adequate surface finish and strength; and minimizing the cost, defects, and waste in 3D printing. Condition monitoring is one of the strategies to achieve the aforementioned. It has a huge potential to minimize defects and print failures in 3D printing. The main objective of this research work is to perform online condition monitoring of the nozzle status with the help of vibration signals in fused deposition modelling process. The effect of nozzle clogging on the consistency of material deposition and its effect on surface finish has experimentally investigated in this work. The set of experiments were performed by artificially creating the condition of nozzle clogging to investigate the effect of nozzle clogging on print quality (surface finish). Nozzle clogging condition was created by increasing the feed rate of polylactic acid (PLA) filament at a low heat supply rate to the nozzle by modifying the commands of 3D printer. The layer thickness was varied throughout the experiments to observe the nozzle clogging. The vibrations signals were acquired by using an accelerometer that was mounted near the nozzle. The data acquisition frequency of the accelerometer was 12500Hz. Further, the acquired vibration signals were analyzed using the Fast Fourier transformation (FFT) signal processing technique. Results revealed that nozzle clogging severely affects surface quality and geometrical accuracy of the fabricated 3D part due to nozzle vibration and non-uniform material deposition. Moreover, nozzle clogging and its relevant consequences like non uniform material deposition can be monitored using vibration signal-based condition monitoring during part fabrication and based upon that appropriate measures can be taken for defects and waste elimination.


2018 ◽  
Vol 24 (2) ◽  
pp. 379-394 ◽  
Author(s):  
Che-Chih Tsao ◽  
Ho-Hsin Chang ◽  
Meng-Hao Liu ◽  
Ho-Chia Chen ◽  
Yun-Tang Hsu ◽  
...  

Purpose The purpose of this paper is to propose and demonstrate a new additive manufacturing approach that breaks the layer-based point scanning limitations to increase fabrication speed, obtain better surface finish, achieve material flexibility and reduce equipment costs. Design/methodology/approach The freeform additive manufacturing approach conceptually views a 3D article as an assembly of freeform elements distributed spatially following a flexible 3D assembly structure, which conforms to the surface of the article and physically builds the article by sequentially forming the freeform elements by a vari-directional vari-dimensional capable material deposition mechanism. Vari-directional building along tangential directions of part surface gives surface smoothness. Vari-dimensional deposition maximizes material output to increase build rate wherever allowed and minimizes deposition sizes for resolution whenever needed. Findings Process steps based on geometric and data processing considerations were described. Dispensing and forming of basic vari-directional and vari-dimensional freeform elements and basic operations of joining them were developed using thermoplastics. Forming of 3D articles at build rates of 2-5 times the fused deposition modeling (FDM) rate was demonstrated and improvement over ten times was shown to be feasible. FDM compatible operations using 0.7 mm wire depositions from a variable exit-dispensing unit were demonstrated. Preliminary tests of a surface finishing process showed a result of 0.8-1.9 um Ra. Initial results of dispensing wax, tin alloy and steel were also shown. Originality/value This is the first time that both vari-directional and vari-dimensional material depositions are combined in a new freeform building method, which has potential impact on the FDM and other additive manufacturing methods.


2019 ◽  
Vol 254 ◽  
pp. 01013 ◽  
Author(s):  
Jozef Harušinec ◽  
Andrej Suchánek ◽  
Mária Loulová

The article deals with creating 3D models using RAPID PROTOTYPING technology. At present, we are witnessing the integration of new technologies into ordinary life. A good example is the use of FDM (fused deposition modeling) technology that primarily uses thermoplastics to create 3D models. A few years ago, the use of rapid prototyping technology was a prerogative of companies, research institutes and a narrow group of universities. Technologies such as FDM and STL (Stereolithography) have become affordable in the past few years for smaller businesses and individuals. The specific segment is the replicating rapid prototype RepRap (replicating rapid prototype), the extended version of which is the Prusa i3 printer.


2016 ◽  
Vol 36 (3) ◽  
pp. 110 ◽  
Author(s):  
Kenny Álvarez ◽  
Rodrigo F. Lagos ◽  
Miguel Aizpun

3D printing is a manufacturing process that is usually used for modeling and prototyping. One of the most popular printing techniques is fused deposition modeling (FDM), which is based on adding melted material layer by layer. Although FDM has several advantages with respect to other manufacturing materials, there are several problems that have to be faced. When setting the printing options, several parameters have to be taken into account, such as temperature, speed, infill percentage, etc. Selecting these parameters is often a great challenge for the user, and is generally solved by experience without considering the influence of variations in the parameters on the mechanical properties of the printed parts.This article analyzes the influence of the infill percentage on the mechanical properties of ABS (Acrylonitrile Butadiene Styrene) printed parts. In order to characterize this influence, test specimens for tensile strength and Charpy tests were printed with a Makerbot Replicator 2X printer, in which the infill percentage was varied but the rest of the printing parameters were kept constant. Three different results were analyzed for these tests: tensile strength, impact resistance, and effective printing time. Results showed that the maximum tensile force (1438N) and tensile stress (34,57MPa) were obtained by using 100% infill. The maximum impact resistance, 1,55J, was also obtained with 100% infill. In terms of effective printing time, results showed that printing with an infill range between 50% and 98% is not recommended, since the effective printing time is higher than with a 100% infill and the tensile strength and impact resistance are smaller. In addition, in comparing the results of our analysis with results from other authors, it can be concluded that the printer type and plastic roll significantly influence the mechanical properties of ABS parts.


manufacturing (AM) enables the production of lattice structure architecture due to its capability to produce complex geometries. Lattice structure is a design that contains a space-filling unit cell that can be tessellated among any axis. It is an analytic design to reduce mass and weight of the object. However, many challenges arise in the AM- printed lattice such as warping, shrinkage, elephant foot, first layer problem, surface finishing and mechanical properties especially when fabricated using fused deposition modeling (FDM) technique. Hence, this study aims to optimize the influence of process parameters of collinear lattice FDM printed part using Taguchi. Meanwhile, S/N ratio was used to find the optimal process parameters in improving the printing quality. Other than that, the analysis of variance (ANOVA) was used to provide the significance ranking of various factors analyzed. From the results, it was found that the layer thickness is the most significant factors that affect the maximum force (N) of collinear lattice structures. In addition, this study was conducted to assist the fabrication of printed part for the structural applications.


Sign in / Sign up

Export Citation Format

Share Document