scholarly journals The Active Reef Restoration Toolbox is a Vehicle for Coral Resilience and Adaptation in a Changing World

2019 ◽  
Vol 7 (7) ◽  
pp. 201 ◽  
Author(s):  
Rinkevich

The accelerating marks of climate change on coral-reef ecosystems, combined with the recognition that traditional management measures are not efficient enough to cope with climate change tempo and human footprints, have raised a need for new approaches to reef restoration. The most widely used approach is the “coral gardening” tenet; an active reef restoration tactic based on principles, concepts, and theories used in silviculture. During the relatively short period since its inception, the gardening approach has been tested globally in a wide range of reef sites, and on about 100 coral species, utilizing hundreds of thousands of nursery-raised coral colonies. While still lacking credibility for simulating restoration scenarios under forecasted climate change impacts, and with a limited adaptation toolkit used in the gardening approach, it is still deficient. Therefore, novel restoration avenues have recently been suggested and devised, and some have already been tested, primarily in the laboratory. Here, I describe seven classes of such novel avenues and tools, which include the improved gardening methodologies, ecological engineering approaches, assisted migration/colonization, assisted genetics/evolution, assisted microbiome, coral epigenetics, and coral chimerism. These are further classified into three operation levels, each dependent on the success of the former level. Altogether, the seven approaches and the three operation levels represent a unified active reef restoration toolbox, under the umbrella of the gardening tenet, focusing on the enhancement of coral resilience and adaptation in a changing world.

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 943
Author(s):  
Leticia Baena-Ruiz ◽  
David Pulido-Velazquez ◽  
Antonio-Juan Collados-Lara ◽  
Juan-de-Dios Gómez-Gómez

An assessment of the risk for groundwater pollution and vulnerability to pumping can help identify strategic groundwater bodies to define sustainable management measures of groundwater resources. In this paper, we propose a new method to make a preliminary estimation of the risk for groundwater pollution at the aquifer scale through the lumped turnover time index (T index). A new lumped index (L-RISK index) was defined to assess the significance of the risk for pollution at the aquifer scale. Both L-RISK and T indices were employed to calibrate a linear regression model that showed a good inverse correlation in the eight aquifers of the Upper Guadiana Basin (Spain). This novel method can be applied to analyze a wide range of aquifers with limited information in order to identify potential strategic aquifers. It also allows one to make a preliminary assessment of the impacts of climate change on L-RISK. The results showed a high variability of the T index in the eight aquifers (8–76 years). Three of them had significant greater mean T values, which could be considered to be the main strategic groundwater resources. In the future, the T index will increase between 8 and 44%, and the L-RISK will decrease in all aquifers (1–18%).


2021 ◽  
Author(s):  
Christian Huggel ◽  
Simon K. Allen ◽  
Indra D. Bhatt ◽  
Rithodi Chakraborty ◽  
Fabian Drenkhan ◽  
...  

<p>Mountains cover about a quarter of the Earth’s land surface and are home to or serve a substantial fraction of the global population with essential ecosystem services, in particular water, food, energy, and recreation. While mountain systems are expected to be highly exposed to climate change, we currently lack a comprehensive global picture of the extent to which environmental and human systems in mountain regions have been affected by recent anthropogenic climate change.</p><p>Here we undertake an unprecedented effort to detect observed impacts of climate change in mountains regions across all continents. We follow the approach implemented in the IPCC 5<sup>th</sup> Assessment Report (AR5) and follow-up research where we consider whether a natural or human system has changed beyond its baseline behavior in the absence of climate change, and then attribute the observed change to different drivers, including anthropogenic climate change. We apply an extensive review of peer-reviewed and grey literature and identify more than 300 samples of impacts (aggregate and case studies). We show that a wide range of natural and human systems in mountains have been affected by climate change, including the cryosphere, the water cycle and water resources, terrestrial and aquatic ecosystems, energy production, infrastructure, agriculture, health, migration, tourism, community and cultural values and disasters. Our assessment documents that climate change impacts are observed in mountain regions on all continents. However, the explicit distinction of different drivers contributing to or determining an observed change is often highly challenging; particularly due to widespread data scarcity in mountain regions. In that context, we were also able to document a high amount of impacts in previously under-reported continents such as Africa and South America. In particular, we have been able to include a substantial number of place-based insights from local/indigenous communities representing important alternative worldviews.</p><p>The role of human influence in observed climate changes is evaluated using data from multiple gridded observational climate products and global climate models. We find that anthropogenic climate change has a clear and discernable fingerprint in changing natural and human mountain systems across the globe. In the cryosphere, ecosystems, water resources and tourism the contribution of anthropogenic climate change to observed changes is significant, showing the sensitivity of these systems to current and future climate change. Furthermore, our analysis reveals the need to consider the plurality of knowledge systems through which climate change impacts are being understood in mountain regions. Such attempts at inclusivity, which addresses issues of representation and justice, should be deemed necessary in exploring climate change impacts.</p>


Author(s):  
U. Rashid Sumaila

This chapter describes the literature of adaptation law in the context of international ocean governance. Adaptation law consists of rules aimed at minimizing the social costs associated with human response to climate impacts. These can be used to shape the behaviour of private actors or public institutions. The law sometimes might provide incentives to make enterprises more resilient as it makes capital unnecessarily stranded during climate change. In order to illustrate the challenges of implementation in the ocean context, the chapter focuses on two examples: international fisheries and ‘mari-engineering’. International fisheries represent ongoing ocean use and regulated by a well-developed body of international law. Due to the wide range of possible climate impacts and adaptive responses, proactive changes to existing fisheries rules in anticipation of climate change fit into the category of general adaptation law, while mari-engineering is engineering the seas to slow or halt climate change impacts.


2016 ◽  
Vol 11 (1) ◽  
pp. 66-68 ◽  
Author(s):  
Marco Bindi ◽  
Paulo A.L.D. Nunes

This special symposium focuses on the analysis of climate change impacts on the spatial dimension of vineyard land use. This includes the analysis of projections of current vineyard areas that are lost due to climate change, those that are retained despite climate change, and new vineyard areas that are created due to climate change. The analysis explores the use of GIS over regional and global scales. Furthermore, this symposium sheds light on the socioeconomic dimension of climate change impacts on the wine industry and viticulture by exploring the use of an ecosystem service approach. Such an economic sector is responsible for the provision of a wide range of cobenefits in addition to wine products. These include biodiversity protection and cultural services, including landscape values and ecotourism benefits (see Nunes and Loureiro, forthcoming). In this context, this symposium endorses the ecosystem service approach to the management of vineyards as a regional strategic plan to promote sustainable development. This embraces a broad range of issues including (1) the improvement of people's quality of life; (2) the increase of prospects for more jobs in rural areas; and (3) the protection of regional commons, including both biodiversity and cultural heritage–oriented commons.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 354
Author(s):  
Ludovica Maria Campagna ◽  
Francesco Fiorito

The body of literature on climate change impacts on building energy consumption is rising, driven by the urgency to implement adaptation measures. Nevertheless, the multitude of prediction methodologies, future scenarios, as well as climate zones investigated, results in a wide range of expected changes. For these reasons, the present review aims to map climate change impacts on building energy consumption from a quantitative perspective and to identify potential relationships between energy variation and a series of variables that could affect them, including heating and cooling degree-days (HDDs and CDDs), reference period, future time slices and IPCC emission scenarios, by means of statistical techniques. In addition, an overview of the main characteristics of the studies related to locations investigated, building types and methodological approaches are given. To sum up, global warming leads to: (i) decrease in heating consumptions; (ii) increase in cooling consumption; (iii) growth in total consumptions, with notable differences between climate zones. No strong correlation between the parameters was found, although a moderate linear correlation was identified between heating variation and HDDs, and total variation and HDDs. The great variability of the collected data demonstrates the importance of increasing specific impact studies, required to identify appropriate adaptation strategies.


2021 ◽  
Author(s):  
Julia Michalak ◽  
Josh Lawler ◽  
John Gross ◽  
Caitlin Littlefield

The U.S. national parks have experienced significant climate-change impacts and rapid, on-going changes are expected to continue. Despite the significant climate-change vulnerabilities facing parks, relatively few parks have conducted comprehensive climate-change vulnerability assessments, defined as assessments that synthesize vulnerability information from a wide range of sources, identify key climate-change impacts, and prioritize vulnerable park resources (Michalak et al. In review). In recognition that funding and planning capacity is limited, this project was initiated to identify geographies, parks, and issues that are high priorities for conducting climate-change vulnerability assessments (CCVA) and strategies to efficiently address the need for CCVAs across all U.S. National Park Service (NPS) park units (hereafter “parks”) and all resources. To help identify priority geographies and issues, we quantitatively assessed the relative magnitude of vulnerability factors potentially affecting park resources and values. We identified multiple vulnerability factors (e.g., temperature change, wildfire potential, number of at-risk species, etc.) and sought existing datasets that could be developed into indicators of these factors. To be included in the study, datasets had to be spatially explicit or already summarized for individual parks and provide consistent data for at least all parks within the contiguous U.S. (CONUS). The need for consistent data across such a large geographic extent limited the number of datasets that could be included, excluded some important drivers of climate-change vulnerability, and prevented adequate evaluation of some geographies. The lack of adequately-scaled data for many key vulnerability factors, such as freshwater flooding risks and increased storm activity, highlights the need for both data development and more detailed vulnerability assessments at local to regional scales where data for these factors may be available. In addition, most of the available data at this scale were related to climate-change exposures, with relatively little data available for factors associated with climate-change sensitivity or adaptive capacity. In particular, we lacked consistent data on the distribution or abundance of cultural resources or accessible data on infrastructure across all parks. We identified resource types, geographies, and critical vulnerability factors that lacked data for NPS’ consideration in addressing data gaps. Forty-seven indicators met our criteria, and these were combined into 21 climate-change vulnerability factors. Twenty-seven indicators representing 12 vulnerability factors addressed climate-change exposure (i.e., projected changes in climate conditions and impacts). A smaller number of indictors measured sensitivity (12 indicators representing 5 vulnerability factors). The sensitivity indicators often measured park or landscape characteristics which may make resources more or less responsive to climate changes (e.g., current air quality) as opposed to directly representing the sensitivity of specific resources within the park (e.g., a particular rare species or type of historical structure). Finally, 6 indicators representing 4 vulnerability factors measured external adaptive capacity for living resources (i.e., characteristics of the park and/or surrounding landscape which may facilitate or impede species adaptation to climate changes). We identified indicators relevant to three resource groups: terrestrial living, aquatic living (including living cultural resources such as culturally significant landscapes, plant, or animal species) and non-living resources (including infrastructure and non-living cultural resources such as historic buildings or archeological sites). We created separate indicator lists for each of these resource groups and analyzed them separately. To identify priority geographies within CONUS,...


2016 ◽  
Vol 11 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Nathalie Ollat ◽  
Jean-Marc Touzard ◽  
Cornelis van Leeuwen

AbstractClimate change will have a profound effect on vine growing worldwide. Wine quality will also be affected, which will raise economic issues. Possible adaptations may result from changes in plant material, viticultural techniques, and the wine-making process. Relocation of vineyards to cooler areas and increased irrigation are other options, but they may result in potential conflicts for land and water use. Grapes are currently grown in many regions around the world, and growers have adapted their practices to the wide range of climatic conditions that can be found among or inside these areas. This knowledge is precious for identifying potential adaptations to climate change. Because climate change affects all activities linked to wine production (grape growing, wine making, wine economics, and environmental issues), multidisciplinary research is needed to guide growers to continue to produce high-quality wines in an economical and environmentally sustainable way. An example of such an interdisciplinary study is the French LACCAVE (long-term adaptation to climate change in viticulture and enology) project, in which researchers from 23 institutes work together on all issues related to the impact of climate change on wine production. (JEL Classifications: Q1, Q5)


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Christopher Ihinegbu

AbstractThe concepts of disasters, hazards and climatic events are well established, showing disciplinary-based perspectives. Globally, efforts have been made to come to a common understanding of these concepts; however, there remains a gap in the conceptualizations of these concepts in Africa, the hub of climate change impacts. This paper identified and characterized the understanding, management practices and limitations of disasters/climate change studies in Africa. This study employed a multi-level review process that resulted in the selection of 170 peer-reviewed articles for study. Findings revealed that the majority of the studies were tied to case studies both in the southern region of Africa and the country of South Africa. Findings also revealed that the 'natural disaster' narrative, which excludes the influence of humans in triggering these events, dominated the studies. This was complemented by the dominance of single-hazard narrative and disaster/hazard management measures that promote the prediction and modeling of nature and disasters. Further, it identified limitations in disaster and hazard studies in Africa such as the lack of synthesis of case studies, lack of adaptive planning, lack of state capacities, research-policy gaps among others. It was recommended that research on climate hazards should explore multi-hazards/disasters, demand driven, give more attention to underrepresented disciplines and capture future dynamics in the employed methodologies.


2021 ◽  
Vol 893 (1) ◽  
pp. 012035
Author(s):  
Ikrom Mustofa ◽  
Perdinan ◽  
Syafararisa Dian Pratiwi ◽  
Suvany Aprilia ◽  
Raden Eliasar Prabowo Tjahjono ◽  
...  

Abstract Designing climate change adaptation actions are considerably a challenge, as the actions should be targeted uniquely addressing climate change impacts. One of the challenges is to determine climate change adaptation sites. The complexity raises considering climate change impact a wide range of economic sectors, which require a lot of resources to conduct a comprehensive climate change assessments. This study proposes the use of climate change hotspots as an initiative to firstly consider the potential targeted sites. The target of global efforts to maintain air temperature under 2°C was employed as a clue to prioritize areas that air temperature is increasing beyond the thresholds to which can affect human activities. This study employed spatial and threshold analysis to develop climate change hotspots of projected temperature change for 2021-2050 over Indonesia. The thresholds were defined by considering the effects of base temperature of 32 °C, 35 °C, and 38 °C on agriculture, environment, and human health in combination with elevated temperature from 0.75 to 2 °C. The initiative method was applied to the baseline and projected air temperature obtained from higher resolution of climate model outputs simulated under representative carbon pathway scenario of 4.5 (RCP 4.5 and 8.5) as a case study. The maps of climate change hotspots provide the potential targeted areas for climate change adaptation actions. Referring to the target of suppressing global temperatures below 2°C, we identified the distribution of climate change hotspots in Indonesia with a scenario of increasing temperature of 2°C from baseline conditions so that future air temperatures will be more than 35°C. The maps can also be combined with the other maps related to climate change analyses, which are available in Indonesia such as SIDIK to refine the priority areas and/or more general geographic information such as city location. As an example, the overlay of climate change hotspots and city location can provide early anticipation on which city will experience urban heat island. The development of climate change hotspots nationally is also expected to initiate climate change services that can be provided to the end users to ease them in defining suitable actions to adapt to the impacts of climate change.


Sign in / Sign up

Export Citation Format

Share Document