scholarly journals Improved Velocity Estimation Method for Doppler Sonar Based on Accuracy Evaluation and Selection

2021 ◽  
Vol 9 (6) ◽  
pp. 576
Author(s):  
Yongshou Yang ◽  
Shiliang Fang

The matched filtering method and the waveform-tracking method cannot maintain optimal velocity estimation performance all of the time. In order to solve this problem, this paper proposes an improved velocity estimation method for Doppler sonar, based on accuracy evaluation and selection. The echo of Doppler sonar is divided into several segments with the same width as the transmitted pulse, and each segment is regarded as the echo of the corresponding water layer. According to our study’s results, the velocity estimation accuracy of each segment is positively correlated with the ratio of its autocorrelation modulus to its power. Based on this conclusion, a velocity accuracy criterion with high accuracy and low complexity is designed in order to select the optimal velocity estimation for water layers or bottoms. The proposed accuracy selection method flexibly selects the echo interval to be processed according to the accuracy criterion, so as to maintain the optimal estimation of the current’s or bottom’s velocity. Water tank and field experiments using a prototype Doppler sonar device demonstrates that, compared with the matched filtering method and the waveform-tracking method, the average velocity estimation accuracy and bias of the proposed method are superior.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3768
Author(s):  
Yongshou Yang ◽  
Shiliang Fang

Broadband acoustic Doppler current profiler (ADCP) is widely used in agricultural water resource explorations, such as river discharge monitoring and flood warning. Improving the velocity estimation accuracy of broadband ADCP by adjusting the waveform parameters of a phase-encoded signal will reduce the velocity measurement range and water stratification accuracy, while the promotion of stratification accuracy will degrade the velocity estimation accuracy. In order to minimize the impact of these two problems on the measurement results, the ADCP waveform optimization problem that satisfies the environment constraints while keeping high velocity estimation accuracy or stratification accuracy is studied. Firstly, the relationship between velocity or distance estimation accuracy and signal waveform parameters is studied by using an ambiguity function. Secondly, the constraints of current velocity range, velocity distribution and other environmental characteristics on the waveform parameters are studied. For two common measurement applications, two dynamic configuration methods of waveform parameters with environmental adaptability and optimal velocity estimation accuracy or stratification accuracy are proposed based on the nonlinear programming principle. Experimental results show that compared with the existing methods, the velocity estimation accuracy of the proposed method is improved by more than 50%, and the stratification accuracy is improved by more than 22%.


2019 ◽  
Vol 11 (12) ◽  
pp. 1474 ◽  
Author(s):  
Minyoung Back ◽  
Donghan Kim ◽  
Sang-Wan Kim ◽  
Joong-Sun Won

Continuously accumulating information on vessels and their activities in coastal areas of interest is important for maintaining sustainable fisheries resources and coastal ecosystems. The speed, heading, sizes, and activities of vessels in certain seasons and at certain times of day are useful information for sustainable coastal management. This paper presents a two-dimensional vessel velocity estimation method using the KOMPSAT-5 (K5) X-band synthetic aperture radar (SAR) system and Doppler parameter estimation. The estimation accuracy was evaluated by two field campaigns in 2017 and 2018. The minimum size of the vessel and signal-to-clutter ratio (SCR) for optimum estimation were determined to be 20 m and 7.7 dB, respectively. The squared correlation coefficient R2 for vessel speed and heading angle were 0.89 and 0.97, respectively, and the root-mean-square errors of the speed and heading were 1.09 m/s (2.1 knots) and 17.9°, respectively, based on 19 vessels that satisfied the criteria of minimum size of vessel and SCR. Because the K5 SAR is capable of observing a selected coastal region every day by utilizing various modes, it is feasible to accumulate a large quantity of vessel data for coastal sea for eventual use in building a coastal traffic model.


2016 ◽  
Vol 70 (2) ◽  
pp. 325-341 ◽  
Author(s):  
Pin Lyu ◽  
Jizhou Lai ◽  
Hugh H.T. Liu ◽  
Jianye Liu ◽  
Wenjing Chen

In this paper, a fault-tolerant velocity estimation method is proposed for quadrotors in a GPS denied environment. A novel filter is developed in light of the quadrotor model and measurements from optical flow and inertial sensors. The proposed filter is capable of detecting and isolating the optical flow sensor faults, by which the velocity estimation accuracy and stability will be improved. It is also demonstrated that the wind velocity is observable in the proposed filter. Therefore, the new filter can also be implemented in a windy environment, which is a significant improvement to the previous model-aided inertial sensor estimator. At the end, some simulations are carried out to verify the advantages of our method.


2021 ◽  
Vol 13 (9) ◽  
pp. 1632
Author(s):  
Yamin Wang ◽  
Jie Chen ◽  
Wei Liu ◽  
Chunsheng Li ◽  
Wei Yang

Imaging position shift based on the multiple azimuth squint angles (MASA) mode is effective for target azimuth velocity estimation, whereas accuracy is low when target range velocity is high. In this paper, the estimation problem for both target azimuth and range velocities is considered based on the multi-channels MASA (MC-MASA) mode. Firstly, the acquisition geometry of MC-MASA mode and Doppler characteristics of a moving target are analyzed in detail, especially in squint mode. Then, for better moving target estimation, the stationary background clutter is removed using the displacement phase center antenna (DPCA) technique, and the failure in range velocity estimation with sequential SAR images is also discussed. Furthermore, a modified along-track interferometry (ATI) is proposed to preliminarily reconstruct the azimuth-and-range velocity map based on the MC-MASA mode. Since the velocity estimation accuracy is dependent on squint angle and signal-to-clutter ratio (SCR), the circumstances are divided into three cases with different iteration estimation strategies, which could expand the scene application scope of velocity estimation and achieve a high estimation accuracy along both azimuth and range directions. Finally, the performance of the proposed method is demonstrated by experimental results.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3250 ◽  
Author(s):  
Aleš Hace ◽  
Milan Čurkovič

Velocity measurement by an incremental encoder is an important issue for advanced motion control applications such as robotics. In this paper, we deal with a kind of MT-type velocity estimation method. Though the conventional MT method is well known and has been well proven in practice, it requires execution of an arithmetic division operation that prevents an efficient implementation on low-cost FPGA-based control platforms. Thus, we propose a divisionless MT-type algorithm, which can provide a similar performance in velocity estimation accuracy as the conventional method, but requiring significantly less FPGA resources, since it implements only simple arithmetic operations such as addition, subtraction, and multiplication, that can be implemented more easily on the processing hardware. Furthermore, the algorithm is fast in execution, thus, it provides the output in only a few clock cycles. Though the proposed algorithm can be described in a recursive form, the stability of the estimation process is not jeopardized, although it is an important issue in this case. Hence, the algorithm is introduced in a form which assures stability in a wide speed range. We show the implementation of the algorithm on the experimental FPGA platform. The experimental results validated the proposed divisionless MT-type algorithm fully for accurate velocity estimation.


Author(s):  
Xiao Chen ◽  
Zaichen Zhang ◽  
Liang Wu ◽  
Jian Dang

Abstract In this journal, we investigate the beam-domain channel estimation and power allocation in hybrid architecture massive multiple-input and multiple-output (MIMO) communication systems. First, we propose a low-complexity channel estimation method, which utilizes the beam steering vectors achieved from the direction-of-arrival (DOA) estimation and beam gains estimated by low-overhead pilots. Based on the estimated beam information, a purely analog precoding strategy is also designed. Then, the optimal power allocation among multiple beams is derived to maximize spectral efficiency. Finally, simulation results show that the proposed schemes can achieve high channel estimation accuracy and spectral efficiency.


2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2436 ◽  
Author(s):  
Jiajia Jiang ◽  
Xianquan Wang ◽  
Fajie Duan ◽  
Chunyue Li ◽  
Xiao Fu ◽  
...  

The covertness of the active sonar is a very important issue and the sonar signal waveform design problem was studied to improve covertness of the system. Many marine mammals produce call pulses for communication and echolocation, and existing interception systems normally classify these biological signals as ocean noise and filter them out. Based on this, a bio-inspired covert active sonar strategy was proposed. The true, rather than man-made sperm whale, call pulses were used to serve as sonar waveforms so as to ensure the camouflage ability of sonar waveforms. A range and velocity measurement combination (RVMC) was designed by using two true sperm whale call pulses which had excellent range resolution (RR) and large Doppler tolerance (DT). The range and velocity estimation methods were developed based on the RVMC. In the sonar receiver, the correlation technology was used to confirm the start and end time of sonar signals and their echoes, and then based on the developed range and velocity estimation method, the range and velocity of the underwater target were obtained. Then, the RVMC was embedded into the true sperm whale call-train to improve the camouflage ability of the sonar signal-train. Finally, experiment results were provided to verify the performance of the proposed method.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879087 ◽  
Author(s):  
Lin Zhou ◽  
Qianxiang Yu ◽  
Daozhi Liu ◽  
Ming Li ◽  
Shukai Chi ◽  
...  

Wireless sensors produce large amounts of data in long-term online monitoring following the Shannon–Nyquist theorem, leading to a heavy burden on wireless communications and data storage. To address this problem, compressive sensing which allows wireless sensors to sample at a much lower rate than the Nyquist frequency has been considered. However, the lower rate sacrifices the integrity of the signal. Therefore, reconstruction from low-dimension measurement samples is necessary. Generally, the reconstruction needs the information of signal sparsity in advance, whereas it is usually unknown in practical applications. To address this issue, a sparsity adaptive subspace pursuit compressive sensing algorithm is deployed in this article. In order to balance the computational speed and estimation accuracy, a half-fold sparsity estimation method is proposed. To verify the effectiveness of this algorithm, several simulation tests were performed. First, the feasibility of subspace pursuit algorithm is verified using random sparse signals with five different sparsities. Second, the synthesized vibration signals for four different compression rates are reconstructed. The corresponding reconstruction correlation coefficient and root mean square error are demonstrated. The high correlation and low error result mean that the proposed algorithm can be applied in the vibration signal process. Third, implementation of the proposed approach for a practical vibration signal from an offshore structure is carried out. To reduce the effect of signal noise, the wavelet de-noising technique is used. Considering the randomness of the sampling, many reconstruction tests were carried out. Finally, to validate the reliability of the reconstructed signal, the structure modal parameters are calculated by the Eigensystem realization algorithm, and the result is only slightly different between original and reconstructed signal, which means that the proposed method can successfully save the modal information of vibration signals.


Sign in / Sign up

Export Citation Format

Share Document