scholarly journals Inversion of Initial Field Based on a Temperature Transport Adjoint

2021 ◽  
Vol 9 (7) ◽  
pp. 760
Author(s):  
Shengyi Jiao ◽  
Shengmao Huang ◽  
Jianfeng Wang ◽  
Xianqing Lv

The setting of initial values is one of the key problems in ocean numerical prediction, with the accuracy of sea water temperature (SWT) simulation and prediction greatly affected by the initial field quality. In this paper, we describe the development of an adjoint assimilation model of temperature transport used to invert the initial temperature field by assimilating the observed data of sea surface temperature (SST) and vertical temperature. Two ideal experiments were conducted to verify the feasibility and validity of this method. By assimilating the “observed data”, the mean absolute error (MAE) between the simulated temperature data and the “observed data” decreased from 1.74 °C and 1.87 °C to 0.13 °C and 0.14 °C, respectively. The spatial distribution of SST difference and the comparison of vertical data also indicate that the regional error of vertical data assimilation is smaller. In the practical experiment, the monthly average temperature field provided by World Ocean Atlas 2018 was selected as background filed and optimized by assimilating the SST data and Argo vertical temperature observation data, to invert the temperature field at 0 a.m. on 1 December 2014 in the South China Sea. Through data assimilation, MAE was reduced from 1.29 °C to 0.65 °C. In terms of vertical observations data comparison and SST spatial distribution, the temperature field obtained by inversion is in good agreement with SST and Argo observations.

2015 ◽  
Vol 143 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Feimin Zhang ◽  
Yi Yang ◽  
Chenghai Wang

Abstract In this paper, the Weather Research and Forecasting (WRF) Model with the three-dimensional variational data assimilation (WRF-3DVAR) system is used to investigate the impact on the near-surface wind forecast of assimilating both conventional data and Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) radiances compared with assimilating conventional data only. The results show that the quality of the initial field and the forecast performance of wind in the lower atmosphere are improved in both assimilation cases. Assimilation results capture the spatial distribution of the wind speed, and the observation data assimilation has a positive effect on near-surface wind forecasts. Although the impacts of assimilating ATOVS radiances on near-surface wind forecasts are limited, the fine structure of local weather systems illustrated by the WRF-3DVAR system suggests that assimilating ATOVS radiances has a positive effect on the near-surface wind forecast under conditions that ATOVS radiances in the initial condition are properly amplified. Assimilating conventional data is an effective approach for improving the forecast of the near-surface wind.


2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

<p>Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake Överuman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km<sup>2</sup> grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.</p>


2015 ◽  
Vol 8 (10) ◽  
pp. 4231-4242 ◽  
Author(s):  
Y. Bao ◽  
J. Xu ◽  
A. M. Powell Jr. ◽  
M. Shao ◽  
J. Min ◽  
...  

Abstract. Using NOAA's Gridpoint Statistical Interpolation (GSI) data assimilation system and NCAR's Advanced Research WRF (Weather Research and Forecasting) (ARW-WRF) regional model, six experiments are designed by (1) a control experiment (CTRL) and five data assimilation (DA) experiments with different data sets, including (2) conventional data only (CON); (3) microwave data (AMSU-A + MHS) only (MW); (4) infrared data (IASI) only (IR); (5) a combination of microwave and infrared data (MWIR); and (6) a combination of conventional, microwave and infrared observation data (ALL). One-month experiments in July 2012 and the impacts of the DA on temperature and moisture forecasts at the surface and four vertical layers over the western United States have been investigated. The four layers include lower troposphere (LT) from 800 to 1000 hPa, middle troposphere (MT) from 400 to 800 hPa, upper troposphere (UT) from 200 to 400 hPa, and lower stratosphere (LS) from 50 to 200 hPa. The results show that the regional GSI–WRF system is underestimating the observed temperature in the LT and overestimating in the UT and LS. The MW DA reduced the forecast bias from the MT to the LS within 30 h forecasts, and the CON DA kept a smaller forecast bias in the LT for 2-day forecasts. The largest root mean square error (RMSE) is observed in the LT and at the surface (SFC). Compared to the CTRL, the MW DA produced the most positive contribution in the UT and LS, and the CON DA mainly improved the temperature forecasts at the SFC. However, the IR DA gave a negative contribution in the LT. Most of the observed humidity in the different vertical layers is overestimated in the humidity forecasts except in the UT. The smallest bias in the humidity forecast occurred at the SFC and in the UT. The DA experiments apparently reduced the bias from the LT to UT, especially for the IR DA experiment, but the RMSEs are not reduced in the humidity forecasts. Compared to the CTRL, the IR DA experiment has a larger RMSE in the moisture forecast, although the smallest bias is found in the LT and MT.


2020 ◽  
Vol 4 (5) ◽  
pp. 951-956
Author(s):  
Miftahul Walid ◽  
Hozairi ◽  
Madukil Makruf

In this research, an analysis was carried out to develop a measuring instrument for seawater density in salt production using a microcontroller (Arduino Uno) and YL-69 sensor, this sensor was commonly used to measure soil moisture. The experimental method was used in this research to produce initial data in the form of resistance and seawater density values, then calculations are carried out using statistical methods to find equations and produce a constant variable that connects the resistance and seawater density values. The equation was used to compile the algorithm into Arduino Uno. As for the results of this research,  From six experiments conducted, two experiments produced the same sea water density value between the actual and the predicted, namely the 2nd and 5th experiments, while for other experiments there was a difference between the actual and predicted values, however, it was not too significant, the difference occurs between the value range 0 ~ 1, to determine the level of error, use the Mean Square Error (MSE) with an error level of = 0.5 and Mean Absolute Error (MAE) with an error level of = 0.6. The contribution of this research is an algorithm that can predict the density value (baume) based on the resistance value obtained from the YL 69 sensor.


2010 ◽  
Vol 7 (4) ◽  
pp. 6179-6205
Author(s):  
J. M. Schuurmans ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. This paper investigates whether the use of remotely sensed latent heat fluxes improves the accuracy of spatially-distributed soil moisture predictions by a hydrological model. By using real data we aim to show the potential and limitations in practice. We use (i) satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact and (ii) an operational physically based distributed (25 m×25 m) hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Firstly, model outcomes of ETact are compared to the processed satellite data. Secondly, we perform data assimilation that updates the modelled soil moisture. We show that remotely sensed ETact is useful in hydrological modelling for two reasons. Firstly, in the procedure of model calibration: comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors (both conceptual and flux-related). Secondly, assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area with forest and deep groundwater levels. As both ASTER and MODIS images were available for the same days, this study provides also an excellent opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides much better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhou B ◽  
◽  
Zhang Y ◽  
Li J ◽  
Wang T ◽  
...  

The growth period prediction at the various physiological stage of spring maize is an essential component in agricultural management decisions. An Improved Climate Suitability (ICS) model was established by integrating temperature, precipitation, sunshine and soil moisture and setting individual weight coefficient in each subordinate function according to the observation data of spring maize growth and meteorological factors of 14 agrometeorological stations in the Liaoning Province of northeast China from 1981 to 2010. The predicted value (Bjk) and reference value (Bk) of the cumulative climatic suitability index were calculated by the ICS model for arranging farming activities in advance when the Bjk > Bk at the various physiological growth stage of spring maize. The ICS model was further verified by the observation data at the whole and various physiological stages of spring maize. The result showed that the Bjk was linearly correlated with the observed days at each physiological growth stage of spring maize with R² of 0.75-0.88, P<0.001, Thus, the Bjk can be used to determine the growth period of the various physiological stage of spring maize. The prediction days were significantly correlated with the observed days at the whole and each physiological growth stage of spring maize (R² of 0.57-0.98, P<0.001) with the absolute error (ABSE) of 1.1-4.1 d. Thus, the precision of the ICS model is acceptable for forecasting the growth period and arranging farming activities in advance. Thus, the ICS model should be promoted further in the management of spring maize plantation.


2021 ◽  
Author(s):  
Alexander Osadchiev ◽  
Dmitry Frey

&lt;p&gt;&lt;span&gt;Discharges from the largest rivers of the World to coastal sea form sea-wide freshened surface layers which areas have order of hundred thousands of square kilometers. Large freshened surface layers (which are among the largest in the World Ocean) are located in the Kara, Laptev, and East-Siberian seas in the Eastern Arctic. &lt;/span&gt;&lt;span&gt;This work is focused on the structure and inter-annual variability of these freshened water masses during ice-free periods. The freshened surface layer in the Laptev and East-Siberian seas is formed mainly by deltaic rives among which the Lena River contributes about two thirds of the inflowing freshwater volume. Based on in situ measurements, we show that the area of this freshened surface layer is much greater than the area of the freshened surface layer in the neighboring Kara Sea, while the total annual freshwater discharge to the Laptev and East-Siberian seas is 1.5 times less than to the Kara Sea (mainly from the estuaries of the Ob and Yenisei rivers). This feature is caused by differences in morphology of the estuaries and deltas. Shallow and narrow channels of the Lena Delta are limitedly affected by sea water. As a result, undiluted Lena discharge inflows to sea from multiple channels and forms relatively shallow plume, as compared to the Ob-Yenisei plumes which mix with subjacent saline sea water in deep and wide estuaries. The shallow Lena plume spreads over wide area (up to 500 000 km&lt;sup&gt;2&lt;/sup&gt;) in the Laptev and East-Siberian seas during and shortly after freshet period in summer and then transforms to the Laptev/East-Siberian ROFI in autumn. Area and position of the relatively shallow freshened surface layer in the Laptev and East-Siberian seas have large inter-annual variability governed by local wind forcing conditions, however, do not show any dependence on significant variability of the annual volume of discharge rate from the Lena River. The deep freshened surface layer in the Kara Sea also has distinct seasonal varability of area and position, however, is stable on inter-annual time scale.&lt;br&gt;&lt;/span&gt;&lt;/p&gt;


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Tuo Shi ◽  
Nianchun Deng ◽  
Zheng Chen ◽  
Haoxu Li

A 75 m long experimental arch with a 1.6 m diameter was constructed in Tibet for a one-year test to determine the most unfavourable vertical temperature difference for a single pipe in the main arch of a concrete-filled steel tube arch bridge. Actual temperature observation data were used to analyse the vertical temperature difference in the single circular pipe arch rib using statistical methods. The standard value for the vertical temperature difference in the single pipe under a return period of 50 years was calculated. The results showed that the influence range of the vertical gradient temperature was 25 cm. The vertical temperature difference followed a lognormal distribution, and the standard values of the positive temperature difference at the upper and lower ends of the single pipe were 16 and 10°C, respectively; the standard values of the negative temperature difference at the upper and lower ends of the single pipe were both -8°C under a return period of 50 years. These results are considerably different from the values specified in the current Chinese code. These could serve as references for calculations involving arch bridges in Tibet with single circular pipes in the main arches.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 968
Author(s):  
Qingfu Liu ◽  
Xuejin Zhang ◽  
Mingjing Tong ◽  
Zhan Zhang ◽  
Bin Liu ◽  
...  

This paper describes the vortex initialization (VI) currently used in NCEP operational hurricane models (HWRF and HMON, and possibly HAFS in the future). The VI corrects the background fields for hurricane models: it consists of vortex relocation, and size and intensity corrections. The VI creates an improved background field for the data assimilation and thereby produces an improved analysis for the operational hurricane forecast. The background field after VI can be used as an initial field (as in the HMON model, without data assimilation) or a background field for data assimilation (as in HWRF model).


2018 ◽  
Vol 25 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Victor Shutyaev ◽  
Francois-Xavier Le Dimet ◽  
Eugene Parmuzin

Abstract. The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find unknown parameters of the model. The observation data, and hence the optimal solution, may contain uncertainties. A response function is considered as a functional of the optimal solution after assimilation. Based on the second-order adjoint techniques, the sensitivity of the response function to the observation data is studied. The gradient of the response function is related to the solution of a nonstandard problem involving the coupled system of direct and adjoint equations. The nonstandard problem is studied, based on the Hessian of the original cost function. An algorithm to compute the gradient of the response function with respect to observations is presented. A numerical example is given for the variational data assimilation problem related to sea surface temperature for the Baltic Sea thermodynamics model.


Sign in / Sign up

Export Citation Format

Share Document