scholarly journals Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century

2021 ◽  
Vol 11 (4) ◽  
pp. 197-214
Author(s):  
Mousumi Saha ◽  
Agniswar Sarkar

With the advancements of science, antibiotics have emerged as an amazing gift to the human and animal healthcare sectors for the treatment of bacterial infections and other diseases. However, the evolution of new bacterial strains, along with excessive use and reckless consumption of antibiotics have led to the unfolding of antibiotic resistances to an excessive level. Multidrug resistance is a potential threat worldwide, and is escalating at an extremely high rate. Information related to drug resistance, and its regulation and control are still very little. To interpret the onset of antibiotic resistances, investigation on molecular analysis of resistance genes, their distribution and mechanisms are urgently required. Fine-tuned research and resistance profile regarding ESKAPE pathogen is also necessary along with other multidrug resistant bacteria. In the present scenario, the interaction of bacterial infections with SARS-CoV-2 is also crucial. Tracking and in-silico analysis of various resistance mechanisms or gene/s are crucial for overcoming the problem, and thus, the maintenance of relevant databases and wise use of antibiotics should be promoted. Creating awareness of this critical situation among individuals at every level is important to strengthen the fight against this fast-growing calamity. The review aimed to provide detailed information on antibiotic resistance, its regulatory molecular mechanisms responsible for the resistance, and other relevant information. In this article, we tried to focus on the correlation between antimicrobial resistance and the COVID-19 pandemic. This study will help in developing new interventions, potential approaches, and strategies to handle the complexity of antibiotic resistance and prevent the incidences of life-threatening infections.

Author(s):  
Samuel Füchtbauer ◽  
Soraya Mousavi ◽  
Stefan Bereswill ◽  
Markus M. Heimesaat

AbstractAntibiotic resistance is endangering public health globally and gives reason for constant fear of virtually intractable bacterial infections. Given a limitation of novel antibiotic classes brought to market in perspective, it is indispensable to explore novel, antibiotics-independent ways to fight bacterial infections. In consequence, the antibacterial properties of natural compounds have gained increasing attention in pharmacological sciences. We here performed a literature survey regarding the antibacterial effects of capsaicin and its derivatives constituting natural compounds of chili peppers. The studies included revealed that the compounds under investigation exerted i.) both direct and indirect antibacterial properties in vitro depending on the applied concentrations and the bacterial strains under investigation; ii.) synergistic antibacterial effects in combination with defined antibiotics; iii.) resistance-modification via inhibition of bacterial efflux pumps; iv.) attenuation of bacterial virulence factor expression; and v.) dampening of pathogen-induced immunopathological responses. In conclusion, capsaicin and its derivatives comprise promising antimicrobial molecules which could complement or replace antibiotic treatment strategies to fight bacterial infections. However, a solid basis for subsequent clinical trials requires future investigations to explore the underlying molecular mechanisms and in particular pharmaceutical evaluations in animal infection models.


Author(s):  
G.M. Rossolini

Antibiotics are one of the most significant advancements of modern medicine. They have changed the prognosis of several bacterial infections, and made possible advanced medical practices associated with a high risk of infectious complications. Unfortunately, antibiotics are affected by the phenomenon of antibiotic resistance, which jeopardizes their efficacy. In recent years, antibiotic discovery and development has been lagging, due to a lower appeal of this sector for the pharmaceutical industry, while antibiotic resistance has continued to evolve with the eventual emergence and dissemination of bacterial strains which are resistant to most available antibiotics and pose a major challenge to antimicrobial chemotherapy. This worrisome scenario, indicated as the “antibiotic resistance crisis”, has been acknowledged by Scientific Societies and Public Health Agencies, and is now gathering an increasing attention from the Media and Governments. This article reviews the antibiotic-resistant pathogens which currently pose major problems in terms of clinical and epidemiological impact, and briefly discuss future perspective in this field.


2017 ◽  
Vol 1 (1) ◽  
pp. 10-17
Author(s):  
Danuta Plotnikava ◽  
Anastasiya Sidarenka ◽  
Galina Novik

Abstract Extensive use of antibiotics in medicine, veterinary practice and animal husbandry has promoted the development and dissemination of bacterial drug resistance. The number of resistant pathogens causing common infectious diseases increases rapidly and creates worldwide public health problem. Commensal bacteria, including lactic acid bacteria of genera Enterococcus and Lactococcus colonizing gastrointestinal and urogenital tracts of humans and animals may act as vehicles of antibiotic resistance genes similar to those found in pathogens. Lactococci and enterococci are widely used in manufacturing of fermented products and as probiotics, therefore monitoring and control of transmissible antibiotic resistance determinants in industrial strains of these microorganisms is necessary to approve their Qualified Presumption of Safety status. Understanding the nature and molecular mechanisms of antibiotic resistance in enterococci and lactococci is essential, as intrinsic resistant bacteria pose no threat to environment and human health in contrast to bacteria with resistance acquired through horizontal transfer of resistance genes. The review summarizes current knowledge concerning intrinsic and acquired antibiotic resistance in Lactococcus and Enterococcus genera, and discusses role of enterococci and lactococci in distribution of this feature.


2016 ◽  
Vol 85 (1) ◽  
pp. 29-31
Author(s):  
Hong Yu (Andrew) Su ◽  
Matt Douglas-Vail

Antibiotics are a powerful tool in fighting bacterial infections but with overuse and misuse, resistance is emerging at an alarming rate. To better understand the root causes of resistance, studying the perceptions of both physicians and the general populace may prove beneficial from a health promotion standpoint. Research reveals that diverging views of these 2 groups remain significant, which proves concerning especially in the face of increasingly resistant bacteria and associated mortality. The issue at large, therefore, requires a better understandifrom both parties with regard to antibiotic guidelines, prescription habits and public awareness campaigns.


2018 ◽  
Vol 243 (6) ◽  
pp. 538-553 ◽  
Author(s):  
Nathan P Coussens ◽  
Ashley L Molinaro ◽  
Kayla J Culbertson ◽  
Tyler Peryea ◽  
Gergely Zahoránszky-Köhalmi ◽  
...  

The increasing emergence of multidrug-resistant bacteria is recognized as a major threat to human health worldwide. While the use of small molecule antibiotics has enabled many modern medical advances, it has also facilitated the development of resistant organisms. This minireview provides an overview of current small molecule drugs approved by the US Food and Drug Administration (FDA) for use in humans, the unintended consequences of antibiotic use, and the mechanisms that underlie the development of drug resistance. Promising new approaches and strategies to counter antibiotic-resistant bacteria with small molecules are highlighted. However, continued public investment in this area is critical to maintain an edge in our evolutionary “arms race” against antibiotic-resistant microorganisms. Impact statement The alarming increase in antibiotic-resistant microorganisms is a rapidly emerging threat to human health throughout the world. Historically, small molecule drugs have played a major role in controlling bacterial infections and they continue to offer tremendous potential in countering resistant organisms. This minireview provides a broad overview of the relevant issues, including the diversity of FDA-approved small molecule drugs and mechanisms of drug resistance, unintended consequences of antibiotic use, the current state of development for small molecule antibacterials and financial challenges that impact progress towards novel therapies. The content will be informative to diverse stakeholders, including clinicians, basic scientists, translational scientists and policy makers, and may be used as a bridge between these key players to advance the development of much-needed therapeutics.


2019 ◽  
Vol 20 (6) ◽  
pp. 1255 ◽  
Author(s):  
Ana Monserrat-Martinez ◽  
Yann Gambin ◽  
Emma Sierecki

Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 688
Author(s):  
Shashi B. Kumar ◽  
Shanvanth R. Arnipalli ◽  
Ouliana Ziouzenkova

Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.


2019 ◽  
Vol 100 ◽  
pp. 00066 ◽  
Author(s):  
Jacek Potorski ◽  
Izabela Koniuszewska ◽  
Małgorzata Czatzkowska ◽  
Monika Harnisz

Wastewater treatment plants (WWTPs) and municipal waste management plants (MWMPs) emit bioaerosols containing potentially pathogenic biological components which post a threat for human health. Microbiological monitoring supports evaluations of the antibiotic resistance (AR) of airborne microorganisms and the relevant health risks. The aim of this study was to analyze the microbiological quality of air sampled in a WWTP and MWMP in Olsztyn based on total bacterial counts, the presence of bacteria resistant to three antibiotic classes (beta-lactams, tetracyclines and chloramphenicol) and genes encoding resistance to these antibiotics (blaTEM, blaSHV, blaCMY-2, blaAmpC, tet(M), tet(A), tet(X), tet(B), cmlA, floR, fexA, fexB and catA1 ). Bacterial counts were higher in air samples collected from the MWMP (~104 CFU/m3) than from the WWTP (101–103 CFU/m3). A similar trend was noted in the counts of antibiotic resistant bacteria (ARB). The abundance of ARB did not exceed 1.7 x 102 CFU/m3 in WWTP samples, but was higher at up to 4.2 x 103 CFU/m3 in MWMP samples. Bacteria resistant to doxycycline were least prevalent in the analyzed ARB. In the group of 49 tested bacterial strains, 44 harbored at least one of the analyzed antibiotic resistance genes (ARGs). A comparison of ARGs in all bacterial strains isolated from WWTP and MWMP air samples revealed the highest diversity and prevalence of ARGs in the samples collected in the mechanical segment of the waste processing line in MWMP and the biological segment of the wastewater processing line in WWTP. The results of this study point to high microbiological contamination of air in MWMPs and WWTPs which are reservoirs of ARB and ARGs and potential sources of AR.


2020 ◽  
Vol 22 (5) ◽  
pp. 1110-1124 ◽  
Author(s):  
Colin J. Cunningham ◽  
Maria S. Kuyukina ◽  
Irena B. Ivshina ◽  
Alexandr I. Konev ◽  
Tatyana A. Peshkur ◽  
...  

The problems associated with potential risks of antibiotic resistance spreading during bioremediation of oil-contaminated soil are discussed. Careful selection of bacterial strains and pretreatment of organic wastes used as fertilizers are suggested.


2020 ◽  
Vol 14 (3) ◽  
pp. 126-135
Author(s):  
Mario Mitra ◽  
Andrea Mancuso ◽  
Flavia Politi ◽  
Alberto Maringhini

Bacterial infections are frequent complications of liver cirrhosis, accounting for severe clinical courses, and increased mortality. The reduction of the negative clinical impact of infections may be achieved by a combination of prophylactic measures to reduce the occurrence, early identification, and management. Spontaneous bacterial peritonitis (SBP), urinary tract infections, pneumonia, cellulitis, and spontaneous bacteremia are frequent in cirrhosis. The choice of initial empirical antimicrobial therapy should be based on both site, severity, and origin of infection (community-acquired, nosocomial, or healthcare-associated) and on antibiotic resistance patterns. 3rd generation cephalosporins are generally indicated as empirical therapy in most community-acquired cases. However, for nosocomial and healthcare-associated infections, due to a high rate of multidrug-resistant (MDR) pathogens, a broader spectrum treatment is appropriate. In order to prevent antibiotic resistance emergence, microbiological cultures should be collected, and a de-escalation applied when antimicrobial susceptibility tests are available. Standard measures to prevent infections and the identification of carriers of MDR bacteria are essential strategies to prevent infections in cirrhosis. Antibiotic prophylaxis should be applied only to gastrointestinal bleeding, SBP recurrence prevention, and cirrhotics at high risk of a first episode of SBP.


Sign in / Sign up

Export Citation Format

Share Document