scholarly journals Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria

Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 182
Author(s):  
Luca Ferretti ◽  
Andrea Krämer-Eis ◽  
Philipp H. Schiffer

Bilateria are the predominant clade of animals on Earth. Despite having evolved a wide variety of body plans and developmental modes, they are characterized by common morphological traits. By default, researchers have tried to link clade-specific genes to these traits, thus distinguishing bilaterians from non-bilaterians, by their gene content. Here we argue that it is rather biological processes that unite Bilateria and set them apart from their non-bilaterian sisters, with a less complex body morphology. To test this hypothesis, we compared proteomes of bilaterian and non-bilaterian species in an elaborate computational pipeline, aiming to search for a set of bilaterian-specific genes. Despite the limited confidence in their bilaterian specificity, we nevertheless detected Bilateria-specific functional and developmental patterns in the sub-set of genes conserved in distantly related Bilateria. Using a novel multi-species GO-enrichment method, we determined the functional repertoire of genes that are widely conserved among Bilateria. Analyzing expression profiles in three very distantly related model species—D. melanogaster, D. rerio and C. elegans—we find characteristic peaks at comparable stages of development and a delayed onset of expression in embryos. In particular, the expression of the conserved genes appears to peak at the phylotypic stage of different bilaterian phyla. In summary, our study illustrate how development connects distantly related Bilateria after millions of years of divergence, pointing to processes potentially separating them from non-bilaterians. We argue that evolutionary biologists should return from a purely gene-centric view of evolution and place more focus on analyzing and defining conserved developmental processes and periods.

2019 ◽  
Author(s):  
Luca Ferretti ◽  
Andrea Krämer-Eis ◽  
Philipp H. Schiffer

AbstractBilateria are the predominant clade of animals on earth. Despite having evolved a large variety of body-plans and developmental modes, they are characterized by common morphological traits. However, it is not clear if clade-specific genes can be linked to these traits, distinguishing bilaterians from non-bilaterians, with their less complex body morphology. Comparing proteomes of bilaterian and non-bilaterian species in an elaborate computational pipeline we aimed to find and define a set of of bilaterian-specific genes. Finding no high-confidence set of such genes, we nevertheless detected an evolutionary signal possibly uniting the highly diverse bilaterian taxa. Using a novel multi-species GO-enrichment method, we determined the functional repertoire of genes that are widely conserved among Bilateria. We found that these genes contribute to morphogenesis, neuronal-system and muscle development, processes that have been described as different between bilaterians and non-bilaterians. Analyzing gene expression profiles in three very distantly related bilaterina species, we find characteristic peaks at comparable stages of development and a delayed onset of expression in embryos. In particular, the expression of the conserved genes appears to peak at the phylotypic stage of different bilaterian phyla. In summary, our data underpin the orthologue conjecture and illustrate how development connects distantly related Bilateria after millions of years of divergence, pointing to processes potentially separating them from non-bilaterians.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huili Qiao ◽  
Jingya Wang ◽  
Yuanzhuo Wang ◽  
Juanjuan Yang ◽  
Bofan Wei ◽  
...  

Abstract Background 20-hydroxyecdysone (20E) plays important roles in insect molting and metamorphosis. 20E-induced autophagy has been detected during the larval–pupal transition in different insects. In Bombyx mori, autophagy is induced by 20E in the larval fat body. Long non-coding RNAs (lncRNAs) function in various biological processes in many organisms, including insects. Many lncRNAs have been reported to be potential for autophagy occurrence in mammals, but it has not been investigated in insects. Results RNA libraries from the fat body of B. mori dissected at 2 and 6 h post-injection with 20E were constructed and sequenced, and comprehensive analysis of lncRNAs and mRNAs was performed. A total of 1035 lncRNAs were identified, including 905 lincRNAs and 130 antisense lncRNAs. Compared with mRNAs, lncRNAs had longer transcript length and fewer exons. 132 lncRNAs were found differentially expressed at 2 h post injection, compared with 64 lncRNAs at 6 h post injection. Thirty differentially expressed lncRNAs were common at 2 and 6 h post-injection, and were hypothesized to be associated with the 20E response. Target gene analysis predicted 6493 lncRNA-mRNA cis pairs and 42,797 lncRNA-mRNA trans pairs. The expression profiles of LNC_000560 were highly consistent with its potential target genes, Atg4B, and RNAi of LNC_000560 significantly decreased the expression of LNC_000560 and Atg4B. These results indicated that LNC_000560 was potentially involved in the 20E-induced autophagy of the fat body by regulating Atg4B. Conclusions This study provides the genome-wide identification and functional characterization of lncRNAs associated with 20E-induced autophagy in the fat body of B. mori. LNC_000560 and its potential target gene were identified to be related to 20-regulated autophagy in B. mori. These results will be helpful for further studying the regulatory mechanisms of lncRNAs in autophagy and other biological processes in this insect model.


Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Peilei Chen ◽  
Valentino Giarola ◽  
Dorothea Bartels

Abstract Main conclusion The cell wall protein CpWAK1 interacts with pectin, participates in decoding cell wall signals, and induces different downstream responses. Abstract Cell wall-associated protein kinases (WAKs) are transmembrane receptor kinases. In the desiccation-tolerant resurrection plant Craterostigma plantagineum, CpWAK1 has been shown to be involved in stress responses and cell expansion by forming a complex with the C. plantagineum glycine-rich protein1 (CpGRP1). This prompted us to extend the studies of WAK genes in C. plantagineum. The phylogenetic analyses of WAKs from C. plantagineum and from other species suggest that these genes have been duplicated after species divergence. Expression profiles indicate that CpWAKs are involved in various biological processes, including dehydration-induced responses and SA- and JA-related reactions to pathogens and wounding. CpWAK1 shows a high affinity for “egg-box” pectin structures. ELISA assays revealed that the binding of CpWAKs to pectins is modulated by CpGRP1 and it depends on the apoplastic pH. The formation of CpWAK multimers is the prerequisite for the CpWAK–pectin binding. Different pectin extracts lead to opposite trends of CpWAK–pectin binding in the presence of Ca2+ at pH 8. These observations demonstrate that CpWAKs can potentially discriminate and integrate cell wall signals generated by diverse stimuli, in concert with other elements, such as CpGRP1, pHapo, Ca2+[apo], and via the formation of CpWAK multimers.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1123
Author(s):  
Yu Cui ◽  
Jie Ji ◽  
Jiwei Hou ◽  
Yi Tan ◽  
Xiaodong Han

Idiopathic pulmonary fibrosis (IPF) is a lethal, agnogenic interstitial lung disease with limited therapeutic options. To investigate vital genes involved in the development of IPF, we integrated and compared four expression profiles (GSE110147, GSE53845, GSE24206, and GSE10667), including 87 IPF samples and 40 normal samples. By reanalyzing these datasets, we managed to identify 62 upregulated genes and 20 downregulated genes in IPF samples compared with normal samples. Differentially expressed genes (DEGs) were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to illustrate relevant pathways of IPF, biological processes, molecular function, and cell components. The DEGs were then subjected to protein–protein interaction (PPI) for network analysis, serving to find 11 key candidate genes (ANXA3, STX11, THBS2, MMP1, MMP9, MMP7, MMP10, SPP1, COL1A1, ITGB8, IGF1). The result of RT-qPCR and immunohistochemical staining verified our finding as well. In summary, we identified 11 key candidate genes related to the process of IPF, which may contribute to novel treatments of IPF.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-Yan Yin ◽  
Yong Tang ◽  
Sheng-Feng Lu ◽  
Ling Luo ◽  
Jia-Ping Wang ◽  
...  

As a major alternative therapy in Traditional Chinese Medicine, it has been demonstrated that moxibustion could generate a series of molecular events in blood, spleen, and brain, and so forth. However, what would happen at the moxibustioned site remained unclear. To answer this question, we performed a microarray analysis with skin tissue taken from the moxibustioned site also Zusanli acupoint (ST36) where 15-minute moxibustion stimulation was administrated. The results exhibited 145 upregulated and 72 downregulated genes which responded immediately under physiological conditions, and 255 upregulated and 243 downregulated genes under pathological conditions. Interestingly, most of the pathways and biological processes of the differentially expressed genes (DEGs) under pathological conditions get involved in immunity, while those under physiological conditions are involved in metabolism.


2021 ◽  
Author(s):  
Hua Bai ◽  
Wei Zou ◽  
Wenhui Zhou ◽  
Keqin Zhang ◽  
Xiaowei Huang

To antagonize infection of pathogenic bacteria in soil and confer increased survival, Caenorhabditis elegans employs innate immunity and behavioral avoidance synchronously as the two main defensive strategies. Although both biological processes and their individual signaling pathways have been partially elucidated, knowledge of their interrelationship remains limited. The current study reveals that deficiency of innate immunity triggered by mutation of the classic immune gene pmk-1 promotes avoidance behavior in C. elegans ; and vice versa. Restoration of pmk-1 expression using the tissue-specific promoters suggested that the functional loss of both intestinal and neuronal pmk-1 is necessary for the enhanced avoidance. Additionally, PMK-1 co-localized with the E3 ubiquitin ligase HECW-1 in OLL neurons and regulated the expressional level of the latter, which consequently affected the production of NPR-1, a G-protein-coupled receptor homologous to the mammalian neuropeptide Y receptor, in RMG neurons in a non-cell-autonomous manner. Collectively, our study illustrates, once the innate immunity is impaired when C. elegans antagonizes bacterial infection, the other defensive strategy of behavioral avoidance can be enhanced accordingly via the HECW-1/NPR-1 module, suggesting that GPCRs in neural circuits may receive the inputs from immune system and integrate those two systems for better adapting to the real-time status.


2017 ◽  
Vol 47 (12) ◽  
Author(s):  
Ruishi He ◽  
Xinxin Zhu ◽  
Qiaoyun Li ◽  
Yumei Jiang ◽  
Dongyan Yu ◽  
...  

ABSTRACT: Wheat (Triticum aestivum L.) stem development significantly affects grain yield. The dwarf plants (D) of wheat mutant dms was less than 30cm. Here, we were to explore the molecular basis for the restrained stem development of the dwarf plants. The results were reached by compare the young spikes and stems transcriptomes of the tall (T) and D plants of mutant dms. We identified 663 genes highly expressed in stem tips. We identified 997 differentially expressed genes (DEGs) in stem tips between T and D, 403 DEGs were significantly related with stem development. Most biological processes in stem tips on dwarf plants were significantly suppressed, such as phytohormone signaling etc. The sequencing analysis results were confirmed by quantitatively analysis the expression profiles of fourteen key DEGs via real-time QRT-PCR. We identified a group genes related to wheat stem development, identified a group DEGs related to the restrained stem development of D plants of dms. The suppressed phytohormone signaling, carbohydrate transport and metabolism were the major causal factors leading to dwarf plants of D. Our dataset provides a useful resource for investigating wheat stem development.


Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5107-5117 ◽  
Author(s):  
Agnès Burniat ◽  
Ling Jin ◽  
Vincent Detours ◽  
Natacha Driessens ◽  
Jean-Christophe Goffard ◽  
...  

We studied gene expression profiles in two mouse models of human thyroid carcinoma: the Tg-RET/PTC3 (RP3) and Tg-E7 mice. RP3 fusion gene is the most frequent mutation found in the first wave post-Chernobyl papillary thyroid cancers (PTCs). E7 is an oncoprotein derived from the human papillomavirus 16 responsible for most cervical carcinoma in women. Both transgenic mice develop thyroid hyperplasia followed by solid differentiated carcinoma in older animals. To understand the different steps leading to carcinoma, we analyzed thyroid gene expression in both strains at different ages by microarray technology. Important biological processes were differentially regulated in the two tumor types. In E7 thyroids, cell cycle was the most up-regulated process, an observation consistent with the huge size of these tumors. In RP3 thyroids, contrary to E7 tumors, several human PTC characteristics were observed: overexpression of many immune-related genes, regulation of human PTC markers, up-regulation of EGF-like growth factors and significant regulation of angiogenesis and extracellular matrix remodeling-related genes. However, similarities were incomplete; they did not concern the overall gene expression and were not conserved in old animals. Therefore, RP3 tumors are partial and transient models of human PTC. They constitute a good model, especially in young animals, to study the respective role of the biological processes shared with human PTC and will allow testing drugs targeting these validated variables.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Hongbing Jiang ◽  
Kevin Chen ◽  
Luis E. Sandoval ◽  
Christian Leung ◽  
David Wang

ABSTRACT Many fundamental biological discoveries have been made in Caenorhabditis elegans. The discovery of Orsay virus has enabled studies of host-virus interactions in this model organism. To identify host factors critical for Orsay virus infection, we designed a forward genetic screen that utilizes a virally induced green fluorescent protein (GFP) reporter. Following chemical mutagenesis, two Viro (virus induced reporter off) mutants that failed to express GFP were mapped to sid-3, a nonreceptor tyrosine kinase, and B0280.13 (renamed viro-2), an ortholog of human Wiskott-Aldrich syndrome protein (WASP). Both mutants yielded Orsay virus RNA levels comparable to that of the residual input virus, suggesting that they are not permissive for Orsay virus replication. In addition, we demonstrated that both genes affect an early prereplication stage of Orsay virus infection. Furthermore, it is known that the human ortholog of SID-3, activated CDC42-associated kinase (ACK1/TNK2), is capable of phosphorylating human WASP, suggesting that VIRO-2 may be a substrate for SID-3 in C. elegans. A targeted RNA interference (RNAi) knockdown screen further identified the C. elegans gene nck-1, which has a human ortholog that interacts with TNK2 and WASP, as required for Orsay virus infection. Thus, genetic screening in C. elegans identified critical roles in virus infection for evolutionarily conserved genes in a known human pathway. IMPORTANCE Orsay virus is the only known virus capable of naturally infecting the model organism Caenorhabditis elegans, which shares many evolutionarily conserved genes with humans. We exploited the robust genetic tractability of C. elegans to identify three host genes, sid-3, viro-2, and nck-1, which are essential for Orsay virus infection. Mutant animals that lack these three genes are highly defective in viral replication. Strikingly, the human orthologs of these three genes, activated CDC42-associated kinase (TNK2), Wiskott-Aldrich syndrome protein (WASP), and noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) are part of a known signaling pathway in mammals. These results suggest that TNK2, WASP, and NCK1 may play important roles in mammalian virus infection. IMPORTANCE Orsay virus is the only known virus capable of naturally infecting the model organism Caenorhabditis elegans, which shares many evolutionarily conserved genes with humans. We exploited the robust genetic tractability of C. elegans to identify three host genes, sid-3, viro-2, and nck-1, which are essential for Orsay virus infection. Mutant animals that lack these three genes are highly defective in viral replication. Strikingly, the human orthologs of these three genes, activated CDC42-associated kinase (TNK2), Wiskott-Aldrich syndrome protein (WASP), and noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) are part of a known signaling pathway in mammals. These results suggest that TNK2, WASP, and NCK1 may play important roles in mammalian virus infection.


Sign in / Sign up

Export Citation Format

Share Document