scholarly journals Multidrug Resistence Prevalence in COVID Area

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 601
Author(s):  
Caterina Aurilio ◽  
Pasquale Sansone ◽  
Antonella Paladini ◽  
Manlio Barbarisi ◽  
Francesco Coppolino ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is often complicated by severe acute respiratory syndrome. The new coronavirus outbreak started in China in December 2019 and rapidly spread around the world. The high diffusibility of the virus was the reason for the outbreak of the pandemic viral disease, reaching more than 100 million infected people globally by the first three months of 2021. In the various treatments used up to now, the use of antimicrobial drugs for the management, especially of bacterial co-infections, is very frequent in patients admitted to intensive care. In addition, critically ill patients with SARS-CoV-2 infection are subjected to prolonged mechanical ventilation and other therapeutic procedures often responsible for developing hospital co-infections due to multidrug-resistant bacteria. Co-infections contribute to the increase in the morbidity–mortality of viral respiratory infections. We performed this study to review the recent articles published on the antibiotic bacterial resistance and viruses to predict risk factors of coronavirus disease 2019 and to assess the multidrug resistance in patients hospitalized in the COVID-19 area.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2047
Author(s):  
Magda Ferreira ◽  
Maria Ogren ◽  
Joana N. R. Dias ◽  
Marta Silva ◽  
Solange Gil ◽  
...  

Antimicrobial drugs are key tools to prevent and treat bacterial infections. Despite the early success of antibiotics, the current treatment of bacterial infections faces serious challenges due to the emergence and spread of resistant bacteria. Moreover, the decline of research and private investment in new antibiotics further aggravates this antibiotic crisis era. Overcoming the complexity of antimicrobial resistance must go beyond the search of new classes of antibiotics and include the development of alternative solutions. The evolution of nanomedicine has allowed the design of new drug delivery systems with improved therapeutic index for the incorporated compounds. One of the most promising strategies is their association to lipid-based delivery (nano)systems. A drug’s encapsulation in liposomes has been demonstrated to increase its accumulation at the infection site, minimizing drug toxicity and protecting the antibiotic from peripheral degradation. In addition, liposomes may be designed to fuse with bacterial cells, holding the potential to overcome antimicrobial resistance and biofilm formation and constituting a promising solution for the treatment of potential fatal multidrug-resistant bacterial infections, such as methicillin resistant Staphylococcus aureus. In this review, we aim to address the applicability of antibiotic encapsulated liposomes as an effective therapeutic strategy for bacterial infections.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 312
Author(s):  
Mohammad Okkeh ◽  
Nora Bloise ◽  
Elisa Restivo ◽  
Lorenzo De Vita ◽  
Piersandro Pallavicini ◽  
...  

In 2017 the World Health Organization (WHO) announced a list of the 12 multidrug-resistant (MDR) families of bacteria that pose the greatest threat to human health, and recommended that new measures should be taken to promote the development of new therapies against these superbugs. Few antibiotics have been developed in the last two decades. Part of this slow progression can be attributed to the surge in the resistance acquired by bacteria, which is holding back pharma companies from taking the risk to invest in new antibiotic entities. With limited antibiotic options and an escalating bacterial resistance there is an urgent need to explore alternative ways of meeting this global challenge. The field of medical nanotechnology has emerged as an innovative and a powerful tool for treating some of the most complicated health conditions. Different inorganic nanomaterials including gold, silver, and others have showed potential antibacterial efficacies. Interestingly, gold nanoparticles (AuNPs) have gained specific attention, due to their biocompatibility, ease of surface functionalization, and their optical properties. In this review, we will focus on the latest research, done in the field of antibacterial gold nanoparticles; by discussing the mechanisms of action, antibacterial efficacies, and future implementations of these innovative antibacterial systems.


2010 ◽  
Vol 54 (12) ◽  
pp. 5193-5200 ◽  
Author(s):  
Victoire de Lastours ◽  
Françoise Chau ◽  
Florence Tubach ◽  
Blandine Pasquet ◽  
Etienne Ruppé ◽  
...  

ABSTRACT The important role of commensal flora as a natural reservoir of bacterial resistance is now well established. However, whether the behavior of each commensal flora is similar to that of other floras in terms of rates of carriage and risk factors for bacterial resistance is unknown. During a 6-month period, we prospectively investigated colonization with fluoroquinolone-resistant bacteria in the three main commensal floras from hospitalized patients at admission, targeting Escherichia coli in the fecal flora, coagulase-negative Staphylococcus (CNS) in the nasal flora, and α-hemolytic streptococci in the pharyngeal flora. Resistant strains were detected on quinolone-containing selective agar. Clinical and epidemiological data were collected. A total of 555 patients were included. Carriage rates of resistance were 8.0% in E. coli, 30.3% in CNS for ciprofloxacin, and 27.2% in streptococci for levofloxacin; 56% of the patients carried resistance in at least one flora but only 0.9% simultaneously in all floras, which is no more than random. Risk factors associated with the carriage of fluoroquinolone-resistant strains differed between fecal E. coli (i.e., colonization by multidrug-resistant bacteria) and nasal CNS (i.e., age, coming from a health care facility, and previous antibiotic treatment with a fluoroquinolone) while no risk factors were identified for pharyngeal streptococci. Despite high rates of colonization with fluoroquinolone-resistant bacteria, each commensal flora behaved independently since simultaneous carriage of resistance in the three distinct floras was uncommon, and risk factors differed. Consequences of environmental selective pressures vary in each commensal flora according to its local specificities (clinical trial NCT00520715 [http://clinicaltrials.gov/ct2/show/NCT00520715 ]).


2021 ◽  
Vol 21 ◽  
Author(s):  
Priyanka Ashwath ◽  
Akhila Dharnappa Sannejal

: The increasing resistance of the disease-causing pathogens to antimicrobial drugs is a public health concern and a socio-economic burden. The emergence of multi-drug resistant strains has made it harder to treat and combat infectious diseases with available conventional antibiotics. There are currently few effective therapeutic regimens for the successful prevention of infections caused by drug-resistant microbes. The various alternative strategies used in the recent past to decrease and limit antibiotic resistance in pathogens include bacteriophages, vaccines, anti-biofilm peptides, and antimicrobial peptides. However, in this review, we focus on the novel and robust molecular approach of antisense RNA (asRNA) technology and the clustered regulatory interspaced short palindromic repeat (CRISPR)-based antibiotic therapy, which can be exploited to selectively eradicate the drug-resistant bacterial strain in a sequence-specific fashion establishing opportunities in the treatment of multi-drug resistant related infections.


2021 ◽  
Vol 22 ◽  
Author(s):  
Namita Sharma ◽  
Anil K. Chhillar ◽  
Sweety Dahiya ◽  
Pooja Choudhary ◽  
Aruna Punia ◽  
...  

The escalating emergence and prevalence of infections caused by multi-drug resistant (MDR) pathogenic bacteria accentuate the crucial need to develop novel and effectual therapeutic strategies to control this threat. Recent past surprisingly indicates a staggering decline in effective strategies against MDR. Different approaches have been employed to minimize the effect of resistance but the question still lingers over the astounding number of drugs already tried and tested to no avail, furthermore, the detection of new drug targets and the action of new antibacterial agents against already existing drug targets also complicate the condition. Antibiotic adjuvants are considered as one such promising approach for overcoming the bacterial resistance. Adjuvants can potentiate the action of generally adopted antibacterial drugs against MDR bacterial pathogens either by minimizing the impact and emergence of resistance or improving the action of antibacterial drugs. This review provides an overview of mechanism of antibiotic resistance, main types of adjuvants and their mode of action, achievements and progression.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2077 ◽  
Author(s):  
Andrea Díaz-Roa ◽  
Abraham Espinoza-Culupú ◽  
Orlando Torres-García ◽  
Monamaris M. Borges ◽  
Ivan N. Avino ◽  
...  

Antibiotic resistance is at dangerous levels and increasing worldwide. The search for new antimicrobial drugs to counteract this problem is a priority for health institutions and organizations, both globally and in individual countries. Sarconesiopsis magellanica blowfly larval excretions and secretions (ES) are an important source for isolating antimicrobial peptides (AMPs). This study aims to identify and characterize a new S. magellanica AMP. RP-HPLC was used to fractionate ES, using C18 columns, and their antimicrobial activity was evaluated. The peptide sequence of the fraction collected at 43.7 min was determined by mass spectrometry (MS). Fluorescence and electronic microscopy were used to evaluate the mechanism of action. Toxicity was tested on HeLa cells and human erythrocytes; physicochemical properties were evaluated. The molecule in the ES was characterized as sarconesin II and it showed activity against Gram-negative (Escherichia coli MG1655, Pseudomonas aeruginosa ATCC 27853, P. aeruginosa PA14) and Gram-positive (Staphylococcus aureus ATCC 29213, Micrococcus luteus A270) bacteria. The lowest minimum inhibitory concentration obtained was 1.9 μM for M. luteus A270; the AMP had no toxicity in any cells tested here and its action in bacterial membrane and DNA was confirmed. Sarconesin II was documented as a conserved domain of the ATP synthase protein belonging to the Fli-1 superfamily. The data reported here indicated that peptides could be alternative therapeutic candidates for use in infections against Gram-negative and Gram-positive bacteria and eventually as a new resource of compounds for combating multidrug-resistant bacteria.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 652 ◽  
Author(s):  
Angela Di Somma ◽  
Antonio Moretta ◽  
Carolina Canè ◽  
Arianna Cirillo ◽  
Angela Duilio

The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.


2020 ◽  
Vol 117 (37) ◽  
pp. 22967-22973
Author(s):  
Amanda C. Zangirolami ◽  
Lucas D. Dias ◽  
Kate C. Blanco ◽  
Carolina S. Vinagreiro ◽  
Natalia M. Inada ◽  
...  

Hospital-acquired infections are a global health problem that threatens patients’ treatment in intensive care units, causing thousands of deaths and a considerable increase in hospitalization costs. The endotracheal tube (ETT) is a medical device placed in the patient’s trachea to assist breathing and delivering oxygen into the lungs. However, bacterial biofilms forming at the surface of the ETT and the development of multidrug-resistant bacteria are considered the primary causes of ventilator-associated pneumonia (VAP), a severe hospital-acquired infection for significant mortality. Under these circumstances, there has been a need to administrate antibiotics together. Although necessary, it has led to a rapid increase in bacterial resistance to antibiotics. Therefore, it becomes necessary to develop alternatives to prevent and combat these bacterial infections. One possibility is to turn the ETT itself into a bactericide. Some examples reported in the literature present drawbacks. To overcome those issues, we have designed a photosensitizer-containing ETT to be used in photodynamic inactivation (PDI) to avoid bacteria biofilm formation and prevent VAP occurrence during tracheal intubation. This work describes ETT’s functionalization with curcumin photosensitizer, as well as its evaluation in PDI against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A significant photoinactivation (up to 95%) against Gram-negative and Gram-positive bacteria was observed when curcumin-functionalized endotracheal (ETT-curc) was used. These remarkable results demonstrate this strategy’s potential to combat hospital-acquired infections and contribute to fighting antimicrobial resistance.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1617
Author(s):  
Raouaa Maaroufi ◽  
Olfa Dziri ◽  
Linda Hadjadj ◽  
Seydina M. Diene ◽  
Jean-Marc Rolain ◽  
...  

Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.


Sign in / Sign up

Export Citation Format

Share Document