scholarly journals Operating Behavior of Sliding Planet Gear Bearings for Wind Turbine Gearbox Applications—Part II: Impact of Structure Deformation

Lubricants ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 98
Author(s):  
Thomas Hagemann ◽  
Huanhuan Ding ◽  
Esther Radtke ◽  
Hubert Schwarze

The use of planetary gear stages intends to increase power density in drive trains of rotating machinery. Due to lightweight requirements on this type of machine elements, structures are comparably flexible while mechanical loads are high. This study investigates the impact of structure deformation on sliding planet gear bearings applied in the planetary stages of wind turbine gearboxes with helical gears. It focuses on three main objectives: (i) development of a procedure for the time-efficient thermo-elasto-hydrodynamic (TEHD) analysis of sliding planet gear bearing; (ii) understanding of the specific deformation characteristics of this application; (iii) investigation of the planet gear bearing’s modified operating behavior, caused by the deformation of the sliding surfaces. Generally, results indicate an improvement of predicted operating conditions by consideration of structure deformation in the bearing analysis for this application. Peak load in the bearing decreases because the loaded proportion of the sliding surface increases. Moreover, tendencies of single design measures, determined for rigid geometries, keep valid but exhibit significantly different magnitudes under consideration of structure deformation. Results show that consideration of structure flexibility is essential for sliding planet gear bearing analysis if quantitative assertions on load distributions, wear phenomena, and interaction of the bearing with other components are required.

Lubricants ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 97
Author(s):  
Thomas Hagemann ◽  
Huanhuan Ding ◽  
Esther Radtke ◽  
Hubert Schwarze

The application of sliding planet gear bearings in wind turbine gearboxes has become more common in recent years. Assuming practically applied helix angles, the gear mesh of the planet stage causes high force and moment loads for these bearings involving high local loads at the bearing edges. Specific operating behavior and suitable design measures to cope with these challenging conditions are studied in detail based on a thermo-hydrodynamic (THD) bearing model. Radial clearance and axial crowning are identified as important design parameters to reduce maximum pressures occurring at the bearing edges. Furthermore, results indicate that a distinct analysis of the gear mesh load distribution is required to characterize bearing operating behavior at part-load. Here, operating conditions as critical as the ones reached at nominal load might occur. Wear phenomena can improve the shape of the gap in the circumferential as well as in axial direction incorporating a significant reduction of local maximum pressures. The complexity of the combination of these aspects and the additionally expected impact of structure deformation gives an insight into the challenges in the design processes of sliding planet gear bearings for wind turbine gearbox applications.


2011 ◽  
Vol 697-698 ◽  
pp. 701-705
Author(s):  
D.D. Ji ◽  
Y.M. Song ◽  
J. Zhang

A lumped-parameter dynamic model for gear train set in wind turbine is proposed to investigate the dynamics of the speed-increasing gear box. The proposed model is developed in a universal Cartesian coordinate, which includes transversal and torsional deflections of each component, time-varying mesh stiffness, gear profile errors and external excitations. By solving the dynamic model, a modal analysis is performed. The results indicate that the modal properties of the multi-stage gear train in wind turbine are similar to those of a single-stage planetary gear set. A harmonic balance method (HBM) is used to obtain the dynamic responses of the gearing system. The responses give insight into the impact of excitations on the vibrations.


Author(s):  
Sofia Koukoura ◽  
Eric Bechhoefer ◽  
James Carroll ◽  
Alasdair McDonald

Abstract Vibration signals are widely used in wind turbine drivetrain condition monitoring with the aim of fault detection, optimization of maintenance actions and therefore reduction of operating costs. Signals are most commonly sampled by accelerometers at high frequency for a few seconds. The behavior of these signals varies significantly, even within the same turbine and depends on different parameters. The aim of this paper is to explore the effect of operational and environmental conditions on the vibration signals of wind turbine gearboxes. Parameters such as speed, power and yaw angle are taken into account and the change in vibration signals is examined. The study includes examples from real wind turbines of both normal operation and operation with known gearbox faults. The effects of varying operating conditions are removed using kalman filtering as a state observer. The findings of this paper will aid in understanding wind turbine gearbox vibration signals, making more informed decisions in the presence of faults and improving maintenance decisions.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6348
Author(s):  
Chao Zhang ◽  
Haoran Duan ◽  
Yu Xue ◽  
Biao Zhang ◽  
Bin Fan ◽  
...  

As the critical parts of wind turbines, rolling bearings are prone to faults due to the extreme operating conditions. To avoid the influence of the faults on wind turbine performance and asset damages, many methods have been developed to monitor the health of bearings by accurately analyzing their vibration signals. Stochastic resonance (SR)-based signal enhancement is one of effective methods to extract the characteristic frequencies of weak fault signals. This paper constructs a new SR model, which is established based on the joint properties of both Power Function Type Single-Well and Woods-Saxon (PWS), and used to make fault frequency easy to detect. However, the collected vibration signals usually contain strong noise interference, which leads to poor effect when using the SR analysis method alone. Therefore, this paper combines the Fourier Decomposition Method (FDM) and SR to improve the detection accuracy of bearing fault signals feature. Here, the FDM is an alternative method of empirical mode decomposition (EMD), which is widely used in nonlinear signal analysis to eliminate the interference of low-frequency coupled signals. In this paper, a new stochastic resonance model (PWS) is constructed and combined with FDM to enhance the vibration signals of the input and output shaft of the wind turbine gearbox bearing, make the bearing fault signals can be easily detected. The results show that the combination of the two methods can detect the frequency of a bearing failure, thereby reminding maintenance personnel to urgently develop a maintenance plan.


Author(s):  
Alessandro Corsini ◽  
Alessio Castorrini ◽  
Enrico Morei ◽  
Franco Rispoli ◽  
Fabrizio Sciulli ◽  
...  

The actual strategy in offshore wind energy development is oriented to the progressive increase of the turbine diameter as well as the per unit power. Among many pioneering technological and aerodynamic issues linked to this design trend, the wind velocity at the blade tip region reaches very high values in normal operating conditions (typically between 90 to 110 m/s). In this range of velocity, the rain erosion phenomenon can have a relevant effect on the overall turbine performance in terms of power and energy production (up to 20% loss in case of deeply eroded leading edge). Therefore, as a customary approach erosion related issues are accounted for in the scheduling of the wind turbine maintenance. When offshore, on the other hand, the criticalities inherent to the cost of maintenance and operation monitoring suggest the rain erosion concerns to be tackled at the turbine design stage. In so doing, the use of computational tools to study the erosion phenomenon of wind turbines under severe meteorological conditions could define the base-line approach in the wind turbine blades design and verification. In this work, the authors present a report on numerical prediction of erosion on a 6 MW HAWT (horizontal axis wind turbine). Two different blade geometries of different aerodynamic loading, have been studied in a view to explore their sensitivity to rain erosion. The fully 3D simulations are carried out using an Euler-Lagrangian approach. Flow field simulations are carried out with the open-source code OpenFOAM, based on a finite volume approach, using Multiple Reference Frame methodology. Reynolds Averaged Navier-Stokes equations for incompressible steady flow were solved with a k-ε turbulence. An in-house code (P-Track) is used to compute the rain drops transport and dispersion, adopting the Particle Cloud Tracking approach (PCT), already validated on large industrial turbomachinery. At the impact on blade, erosion is modelled accounting for the main quantities affecting the phenomenon, which are impact velocity and material properties of the target surface. Results provide the regions of the two blades more sensitive to erosion, and the effect of the blade geometry on erosion attitude.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8542
Author(s):  
Julian Röder ◽  
Georg Jacobs ◽  
Tobias Duda ◽  
Dennis Bosse ◽  
Fabian Herzog

Electrical faults can lead to transient and dynamic excitations of the electromagnetic generator torque in wind turbines. The fast changes in the generator torque lead to load oscillations and rapid changes in the speed of rotation. The combination of dynamic load reversals and changing rotational speeds can be detrimental to gearbox components. This paper shows, via simulation, that the smearing risk increases due to the electrical faults for cylindrical roller bearings on the high speed shaft of a wind turbine research nacelle. A grid fault was examined for the research nacelle with a doubly fed induction generator concept. Furthermore, a converter fault was analyzed for the full size converter concept. Both wind turbine grid connection concepts used the same mechanical drive train. Thus, the mechanical component loading was comparable. During the grid fault, the risk of smearing increased momentarily by a maximum of around 1.8 times. During the converter fault, the risk of smearing increased by around 4.9 times. Subsequently, electrical faults increased the risk of damage to the wind turbine gearbox bearings, especially on the high speed stage.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Francesco Papi ◽  
Lorenzo Cappugi ◽  
Sebastian Perez-Becker ◽  
Alessandro Bianchini

Abstract Wind turbines operate in challenging environmental conditions. In hot and dusty climates, blades are constantly exposed to abrasive particles that, according to many field reports, cause significant damages to the leading edge. On the other hand, in cold climates similar effects can be caused by prolonged exposure to hail and rain. Quantifying the effects of airfoil deterioration on modern multi-MW wind turbines is crucial to correctly schedule maintenance and to forecast the potential impact on productivity. Analyzing the impact of damage on fatigue and extreme loading is also important to improve the reliability and longevity of wind turbines. In this work, a blade erosion model is developed and calibrated using computational fluid dynamics (CFD). The Danmarks Tekniske Universitet (DTU) 10 MW Reference Wind Turbine is selected as the case study, as it is representative of the future generation wind turbines. Lift and Drag polars are generated using the developed model and a CFD numerical setup. Power and torque coefficients are compared in idealized conditions at two wind speeds, i.e., the rated speed and one below it. Full aero-servo-elastic simulations of the turbine are conducted with the eroded polars using NREL's BEM-based code OpenFAST. Sixty-six 10-min simulations are performed for each stage of airfoil damage, reproducing operating conditions specified by the IEC 61400-1 power production DLC-group, including wind shear, yaw misalignment, and turbulence. Aeroelastic simulations are analyzed, showing maximum decreases in CP of about 12% as well as reductions in fatigue and extreme loading.


2017 ◽  
Vol 69 (2) ◽  
pp. 306-311 ◽  
Author(s):  
Yuxiang Chen ◽  
Mutellip Ahmat ◽  
Zhong-tang Huo

Purpose Irregular windy loads are loaded for a wind turbine. This paper aims to determine the form of gear failure and the working life of the gear system by assessing the dynamic strength of gears and dynamic stress distribution. Design/methodology/approach The helical planetary gear system of the wind turbine growth rate gearbox was investigated, and while a variety of clearance and friction gear meshing processes were considered in the planetary gear system, a finite element model was built based on the contact–impact dynamics theory, solved using the explicit algorithm. The impact stress of the sun gear of the planetary gear system was calculated under different loads. An integrated planetary gear meshing stiffness, and the error of system dynamic transmission error were investigated when the planetary gear meshes with the sun or ring gears. Findings The load has little effect on the sun gear of the impact stress which was known. The varying stiffness is different while the planetary gear meshes with the sun and ring gears. There were differences between the planetary gear system and the planetary gear, and with load, the planetary gear transmission error decreases. Originality/value This study will provide basis knowledge for the planetary gear system.


Sign in / Sign up

Export Citation Format

Share Document