scholarly journals A Co-Polarization Broadband Radar Absorber for RCS Reduction

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1668 ◽  
Author(s):  
Thtreswar Beeharry ◽  
Riad Yahiaoui ◽  
Kamardine Selemani ◽  
Habiba Ouslimani

In this article, a single layer co-polarization broadband radar absorber is presented. Under normal incidence, it achieves at least 90% of absorption from 5.6 GHz to 9.1 GHz for both Transverse Electric (TE) and Transverse Magnetic (TM) polarizations. Our contribution and the challenge of this work is to achieve broadband absorption using a very thin single layer dielectric and it is achieved by rotating the resonating element by 45°. An original optimized Underlined U shape has been developed for the resonating element which provides a broadband co-polarization absorption. The structure is 12.7 times thinner than the wavelength at the center frequency. To understand the absorption mechanism, the transmission line model of an absorber and the three near unity absorption peaks at 5.87 GHz, 7.16 GHz and 8.82 GHz have been used to study the electric and magnetic fields. The physical insight of how the three near unity absorption peaks are achieved has also been discussed. After fabricating the structure, the measurements were found to be in good agreement with the simulation results. Furthermore, with the proposed original UUSR resonating element, the operational bandwidth to thickness ratio of 6.43 is obtained making the proposed UUSR very competitive.

Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 562 ◽  
Author(s):  
Longfang Ye ◽  
Xin Chen ◽  
Guoxiong Cai ◽  
Jinfeng Zhu ◽  
Na Liu ◽  
...  

We numerically demonstrate a broadband terahertz (THz) absorber that is based on a hybrid-patterned graphene metasurface with excellent properties of polarization insensitivity, wide-angle, and active tunability. Our design is made up of a single-layer graphene with periodically arranged hybrid square/disk/loop patterns on a multilayer structure. We find that broadband absorption with 90% terahertz absorbance and the fractional bandwidth of 84.5% from 1.38 THz to 3.4 THz can be achieved. Because of the axisymmetric configuration, the absorber demonstrates absolute polarization independence for both transverse electric (TE) and transverse magnetic (TM) polarized terahertz waves under normal incidence. We also show that a bandwidth of 60% absorbance still remains 2.7 THz, ranging from 1.3 THz to 4 THz, for a wide incident angle ranging from 0° to 60°. Finally, we find that by changing the graphene Fermi energy from 0.7 eV to 0 eV, the absorbance of the absorbers can be easily tuned from more than 90% to lower than 20%. The proposed absorber may have promising applications in terahertz sensing, detecting, imaging, and cloaking.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 784 ◽  
Author(s):  
Phuc Toan Dang ◽  
Tuan V. Vu ◽  
Jongyoon Kim ◽  
Jimin Park ◽  
Van-Chuc Nguyen ◽  
...  

We present a design of an ultra-broadband metamaterial absorber in the visible and near- infrared regions. The unit cell structure consists of a single layer of metallic truncated-pyramid resonator-dielectric-metal configuration, which results in a high absorption over a broad wavelength range. The absorber exhibits 98% absorption at normal incidence spanning a wideband range of 417–1091 nm, with >99% absorption within 822–1054 nm. The broadband absorption stability maintains 95% at large incident angles up to 40° for the transverse electric (TE)-mode and 20° for the transverse magnetic (TM)-mode. Furthermore, the polarization-insensitive broadband absorption is presented in this paper by analyzing absorption performance with various polarization angles. The proposed absorber can be applied for applications such as solar cells, infrared detection, and communication systems thanks to the convenient and compatible bandwidth for electronic THz sources.


2020 ◽  
Vol 10 (2) ◽  
pp. 436 ◽  
Author(s):  
Jinfeng Wang ◽  
Tingting Lang ◽  
Tingting Shen ◽  
Changyu Shen ◽  
Zhi Hong ◽  
...  

In this article we present and numerically investigate a broadband all-silicon terahertz (THz) absorber which consists of a single-layer periodic array of a diamond metamaterial layer placed on a silicon substrate. We simulated the absorption spectra of the absorber under different structural parameters using the commercial software Lumerical FDTD solutions, and analyzed the absorption mechanism from the distribution of the electromagnetic fields. Finally, the absorption for both transverse electric (TE) and transverse magnetic (TM) polarizations under different incident angles from 0 to 70° were investigated. Herein, electric and magnetic resonances are proposed that result in perfect broadband absorption. When the absorber meets the impedance matching principle in accordance with the loss mechanism, it can achieve a nearly perfect absorption response. The diamond absorber exhibits an absorption of ~100% at 1 THz and achieves an absorption efficiency >90% within a bandwidth of 1.3 THz. In addition, owing to the highly structural symmetry, the absorber has a polarization-independent characteristic. Compared with previous metal–dielectric–metal sandwiched absorbers, the all-silicon metamaterial absorbers can avoid the disadvantages of high ohmic losses, low melting points, and high thermal conductivity of the metal, which ensure a promising future for optical applications, including sensors, modulators, and photoelectric detection devices.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 300 ◽  
Author(s):  
Musab Hameed ◽  
Gaobiao Xiao ◽  
Ali Najam ◽  
Lina Qiu ◽  
Tayyab Hameed

This paper proposes a method for designing a quadruple-mode wideband bandpass filter using off-centered perturbed metallic cylinders in a rectangular waveguide cavity with compact size and improved out-of-band rejection. Two off-centered perturbation cylinders were placed at the bottom of the rectangular waveguide cavity along with a pair of perpendicularly-fed coaxial lines, which excited four quasi-transverse magnetic (TM) modes to realize the desired passband. The height of the waveguide cavity and the shape of the perturbation cylinders were exploited to achieve an all quasi-TM modes filter with good out-of-band rejection and sharp skirt selectivity. The proposed filter operates at 2.93 GHz center frequency with 38% wide fractional bandwidth (FBW). The proposed filter is fabricated using aluminum. The measured and simulated results are in good agreement with each other.


2019 ◽  
Vol 12 (4) ◽  
pp. 276-281
Author(s):  
Musab Hameed ◽  
Gaobiao Xiao ◽  
Lina Qiu ◽  
Tayyab Hameed

AbstractThis paper presents design of quintuple-mode wideband bandpass filters, implemented with off-centered perturbed metallic cylinders in a rectangular waveguide cavity. Three perturbation cylinders are placed at the bottom of the rectangular waveguide cavity, along with a pair of perpendicularly fed coaxial lines; excite five quasi-transverse magnetic modes to realize the desired passband. The height of the waveguide cavity and the shape of the perturbation cylinders are exploited to shift the resonant modes far away from the passband and achieve a good out-of-band rejection and sharp skirt selectivity. The filter operates at the center frequency of 2.68 GHz with a wide fractional bandwidth of 43%. The proposed filter is fabricated with aluminum. The measured and simulated results are in good agreement with each other.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1110
Author(s):  
Jinfeng Wang ◽  
Tingting Lang ◽  
Zhi Hong ◽  
Meiyu Xiao ◽  
Jing Yu

We presented and manufactured a triple-band terahertz (THz) metamaterial absorber with three concentric square ring metallic resonators, a polyethylene terephthalate (PET) layer, and a metallic substrate. The simulation results demonstrate that the absorptivity of 99.5%, 86.4%, and 98.4% can be achieved at resonant frequency of 0.337, 0.496, and 0.718 THz, respectively. The experimental results show three distinct absorption peaks at 0.366, 0.512, and 0.751 THz, which is mostly agreement with the simulation. We analyzed the absorption mechanism from the distribution of electric and magnetic fields. The sensitivity of the three peaks of this triple-band absorber to the surrounding is 72, 103.5, 139.5 GHz/RIU, respectively. In addition, the absorber is polarization insensitive because of the symmetric configuration. The absorber can simultaneously exhibit high absorption effect at incident angles up to 60° for transverse electric (TE) polarization and 70° for transverse magnetic (TM) polarization. This presented terahertz metamaterial absorber with a triple-band absorption and easy fabrication can find important applications in biological sensing, THz imaging, filter and optical communication.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xinyu Da ◽  
Jialiang Wu ◽  
Jing Zhao ◽  
Lin Baoqin ◽  
Kai Wu

A circularly polarized broadband low-cost reflectarray in Ku-band is presented using a novel single-layer subwavelength phase-shifting element. The proposed subwavelength element consists of the concentric split ring and the crossed bowtie. The linear reflected phase response curve with 360° phase coverage is obtained. For experimental verification, an array of 25 × 25 reflectarray prototype has been designed and manufactured by employing the angular rotation technique. The measurements are in good agreement with the simulations. The measured gain at the center frequency of 12.5 GHz is 26.6 dBi, corresponding to the aperture efficiency of 52.5%, and the 1 dB gain bandwidth is 26.4%.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 860 ◽  
Author(s):  
Fu Chen ◽  
Yongzhi Cheng ◽  
Hui Luo

We present a simple design of a broadband tunable metamaterial absorber (MMA) in the terahertz (THz) region, which consists of a single layer complementary gammadion-shaped (CGS) graphene sheet and a polydimethylsiloxane (PDMS) dielectric substrate placed on a continuous metal film. The Fermi energy level (Ef) of the graphene can be modulated dynamically by the applied DC bias voltage, which enables us to electrically control the absorption performance of the proposed MMA flexibly. When Ef = 0.8 eV, the relative bandwidth of the proposed MMA, which represents the frequency region of absorption beyond 90%, can reaches its maximal value of 72.1%. Simulated electric field distributions reveal that the broadband absorption mainly originates from the excitation of surface plasmon polaritons (SPPs) on the CGS graphene sheet. Furthermore, the proposed MMA is polarization-insensitive and has wide angles for both transverse-electric (TE) and transverse-magnetic (TM) waves in the broadband frequency range. The broadband absorption capacity of the designed MMA can be effectively adjusted by varying the Fermi energy level of graphene. Lastly, the absorbance of the MMA can be adjusted from 42% to 99.1% by changing the Ef from 0 eV to 0.8 eV, which is in agreement with the theoretical calculation by using the interference 41theory. Due to its simple structure and flexible tunability, the proposed MMA has potential application prospects in tunable filtering, modulators, sensing, and other multispectral devices.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ting Liu ◽  
Lin Zhang ◽  
Jialiang Wu ◽  
Jing Zhao ◽  
Zhiguo Zeng

Abstract A single-layer wideband high efficiency reflectarray in Ku-band has been presented in this paper. A novel dual-resonant patch element approach has been analyzed and optimized to obtain good radiation performances within the operating frequency band. The phase shift range of 573° can be obtained with less steep linear phase shift curve. To compensate the differential spatial phase delays from the feed to the elements, the variable size technique has been utilized for obtaining required phase shifts. The reflectarray aperture has been designed, manufactured and measured. Measured results are in good agreement with the simulated ones. The measured gain of the reflectarray aperture at center frequency can reach 27.2 dBi, which is equivalent to aperture efficiency of 51.3%, and the 1-dB gain bandwidth of the aperture is 18.4%.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1221 ◽  
Author(s):  
Zhi Weng ◽  
Yunsheng Guo

Resonance absorption mechanism-based metasurface absorbers can realize perfect optical absorption. Further, all-dielectric metasurface absorbers have more extensive applicability than metasurface absorbers that contain metal components. However, the absorption peaks of the all-dielectric metasurface absorbers reported to date are very sharp. In this work, we propose a broadband optical absorption all-dielectric metasurface, where a unit cell of this metasurface is composed of two coupled subwavelength semiconductor resonators arrayed in the direction of the wave vector and embedded in a low-index material. The results indicate that the peak absorption for more than 99% is achieved across a 60 nm bandwidth in the short-wavelength infrared region. This absorption bandwidth is three times that of a metasurface based on the conventional design scheme that consists of only a single layer of semiconductor resonators. Additionally, the coupled semiconductor resonator-based all-dielectric metasurface shows robust perfect absorption properties when the geometrical and material parameters—including the diameter, height, permittivity, and loss tangent of the resonator and the vertical and horizontal distances between the two centers of the coupled resonators—are varied over a wide range. With the convenience of use of existing semiconductor technologies in micro/nano-processing of the surface, this proposed broadband absorption all-dielectric metasurface offers a path toward realizing potential applications in numerous optical devices.


Sign in / Sign up

Export Citation Format

Share Document