scholarly journals Broadband Perfect Optical Absorption by Coupled Semiconductor Resonator-Based All-Dielectric Metasurface

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1221 ◽  
Author(s):  
Zhi Weng ◽  
Yunsheng Guo

Resonance absorption mechanism-based metasurface absorbers can realize perfect optical absorption. Further, all-dielectric metasurface absorbers have more extensive applicability than metasurface absorbers that contain metal components. However, the absorption peaks of the all-dielectric metasurface absorbers reported to date are very sharp. In this work, we propose a broadband optical absorption all-dielectric metasurface, where a unit cell of this metasurface is composed of two coupled subwavelength semiconductor resonators arrayed in the direction of the wave vector and embedded in a low-index material. The results indicate that the peak absorption for more than 99% is achieved across a 60 nm bandwidth in the short-wavelength infrared region. This absorption bandwidth is three times that of a metasurface based on the conventional design scheme that consists of only a single layer of semiconductor resonators. Additionally, the coupled semiconductor resonator-based all-dielectric metasurface shows robust perfect absorption properties when the geometrical and material parameters—including the diameter, height, permittivity, and loss tangent of the resonator and the vertical and horizontal distances between the two centers of the coupled resonators—are varied over a wide range. With the convenience of use of existing semiconductor technologies in micro/nano-processing of the surface, this proposed broadband absorption all-dielectric metasurface offers a path toward realizing potential applications in numerous optical devices.

2020 ◽  
Vol 10 (2) ◽  
pp. 436 ◽  
Author(s):  
Jinfeng Wang ◽  
Tingting Lang ◽  
Tingting Shen ◽  
Changyu Shen ◽  
Zhi Hong ◽  
...  

In this article we present and numerically investigate a broadband all-silicon terahertz (THz) absorber which consists of a single-layer periodic array of a diamond metamaterial layer placed on a silicon substrate. We simulated the absorption spectra of the absorber under different structural parameters using the commercial software Lumerical FDTD solutions, and analyzed the absorption mechanism from the distribution of the electromagnetic fields. Finally, the absorption for both transverse electric (TE) and transverse magnetic (TM) polarizations under different incident angles from 0 to 70° were investigated. Herein, electric and magnetic resonances are proposed that result in perfect broadband absorption. When the absorber meets the impedance matching principle in accordance with the loss mechanism, it can achieve a nearly perfect absorption response. The diamond absorber exhibits an absorption of ~100% at 1 THz and achieves an absorption efficiency >90% within a bandwidth of 1.3 THz. In addition, owing to the highly structural symmetry, the absorber has a polarization-independent characteristic. Compared with previous metal–dielectric–metal sandwiched absorbers, the all-silicon metamaterial absorbers can avoid the disadvantages of high ohmic losses, low melting points, and high thermal conductivity of the metal, which ensure a promising future for optical applications, including sensors, modulators, and photoelectric detection devices.


2019 ◽  
Vol 9 (16) ◽  
pp. 3358 ◽  
Author(s):  
Yuexin Zou ◽  
Jun Cao ◽  
Xue Gong ◽  
Ruijie Qian ◽  
Zhenghua An

Metamaterials integrated with graphene exhibit tremendous freedom in tailoring their optical properties, particularly in the infrared region, and are desired for a wide range of applications, such as thermal imaging, cloaking, and biosensing. In this article, we numerically and experimentally demonstrate an ultrathin (total thickness < λ 0 / 15 ) and electrically tunable mid-infrared perfect absorber based on metal–insulator–metal (MIM) structured metamaterials. The Q-values of the absorber can be tuned through two rather independent parameters, with geometrical structures of metamaterials tuning radiation loss (Qr) of the system and the material loss (tanδ) to further change mainly the intrinsic loss (Qa). This concise mapping of the structural and material properties to resonant mode loss channels enables a two-stage optimization for real applications: geometrical design before fabrication and then electrical tuning as a post-fabrication and fine adjustment knob. As an example, our device demonstrates an electrical and on-site tuning of ~5 dB change in absorption near the perfect absorption region. Our work provides a general guideline for designing and realizing tunable infrared devices and may expand the applications of perfect absorbers for mid-infrared sensors, absorbers, and detectors in extreme spatial-limited circumstances.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750136 ◽  
Author(s):  
Jianguo Wang ◽  
Chaoyi Yin ◽  
Meiping Zhu ◽  
Jian Sun ◽  
Kui Yi ◽  
...  

We design and numerically investigate a wide angle and broadband perfect absorber with compact multilayer structures. The proposed structure is composed of three stacks of semiconductor films and one metal layer. The absorber presents a broadband absorption between 450 nm and 700 nm with an average absorption above 99.2%. For oblique incidence, the absorber shows an average absorption about 90% for a wide range of incident angles from 0[Formula: see text] to 60[Formula: see text] with p polarization and s polarization. The electrical field intensity distributions are also studied to disclose the broadband absorption mechanism. This designed broadband absorber appears to have very promising applications in solar thermal energy harvesting, thermal emitters and detection.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1668 ◽  
Author(s):  
Thtreswar Beeharry ◽  
Riad Yahiaoui ◽  
Kamardine Selemani ◽  
Habiba Ouslimani

In this article, a single layer co-polarization broadband radar absorber is presented. Under normal incidence, it achieves at least 90% of absorption from 5.6 GHz to 9.1 GHz for both Transverse Electric (TE) and Transverse Magnetic (TM) polarizations. Our contribution and the challenge of this work is to achieve broadband absorption using a very thin single layer dielectric and it is achieved by rotating the resonating element by 45°. An original optimized Underlined U shape has been developed for the resonating element which provides a broadband co-polarization absorption. The structure is 12.7 times thinner than the wavelength at the center frequency. To understand the absorption mechanism, the transmission line model of an absorber and the three near unity absorption peaks at 5.87 GHz, 7.16 GHz and 8.82 GHz have been used to study the electric and magnetic fields. The physical insight of how the three near unity absorption peaks are achieved has also been discussed. After fabricating the structure, the measurements were found to be in good agreement with the simulation results. Furthermore, with the proposed original UUSR resonating element, the operational bandwidth to thickness ratio of 6.43 is obtained making the proposed UUSR very competitive.


2021 ◽  
Vol 263 (4) ◽  
pp. 2219-2227
Author(s):  
Josué Costa Baptista ◽  
Edith Roland-Fotsing ◽  
Jacky Mardjano ◽  
Daniel Therriault ◽  
Annie Ross

Single layer optimized microchannels (268µm channels size) present high absorption at the quarter-wave resonance frequency (2460Hz for 30mm-thick treatment) but cannot provide significant absorption at lower frequencies. In this work, the absorption coefficient of multilayer treatments with 2, 5, 10- and 30-layers of channels with size varying from 50µm to 15mm was numerically optimized. The equivalent fluid wave number and characteristic impedance of each layer were predicted using the JCAL model. The Double-scale Asymptotic Method (DAM) was used to obtain the JCAL parameters. The multilayer treatment absorption was modelled with the Transfer Matrix Method (TMM). It was shown that multilayer treatments present superior absorption than single layer. For instance, bilayer treatment made of a 1mm-thick top layer (facing incident wave) of channels of 58µm and a 29mm-thick bottom layer of channels with 8.1mm provides perfect absorption around 1200Hz (i.e. 1260Hz below the quarter-wave resonance frequency of 30mm-thick single layer treatment). Alternatively, a 30-layer treatment with channels size varying from 100µm to 9.6mm provides absorption higher than 0.8 between 1350 and 6270Hz (i.e. 54% higher than single layer treatment with same thickness). These results pave the way to the fabrication of new multilayer treatments with interesting subwavelength and broadband absorption capabilities.


2011 ◽  
Vol 25 (16) ◽  
pp. 1393-1399
Author(s):  
X. G. XU ◽  
R. YIN ◽  
G. J. XU ◽  
J. C. CAO

When epitaxially grown on silicon carbide, a single layer graphene will exhibit a finite energy bandgap like a conventional semiconductor, and its energy dispersion is no longer linear in momentum space in the low energy regime. In this paper, we present a quantitative analysis on the effect of the SiC substrate in the optical absorption of π-electrons in graphene. We calculated the absorption matrix element and the optical absorption in the near infrared even to the visible region by taking into account the SiC substrate effect. It has been found that the substrate effect can significantly enhance the optical absorption in graphene in the near-infrared region, even by up to 90%. It may be helpful to eliminate the previous discrepancy of optical transmission between the theoretical results and the experimental results in the near-infrared to the visible region.


2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiayuan Du ◽  
Yuezhou Luo ◽  
Xinyu Zhao ◽  
Xiaodong Sun ◽  
Yanan Song ◽  
...  

AbstractThe recent advent of acoustic metamaterials offers unprecedented opportunities for sound controlling in various occasions, whereas it remains a challenge to attain broadband high sound absorption and free air flow simultaneously. Here, we demonstrated, both theoretically and experimentally, that this problem can be overcome by using a bilayer ventilated labyrinthine metasurface. By altering the spacing between two constituent single-layer metasurfaces and adopting asymmetric losses in them, near-perfect (98.6%) absorption is achieved at resonant frequency for sound waves incident from the front. The relative bandwidth of absorption peak can be tuned in a wide range (from 12% to 80%) by adjusting the open area ratio of the structure. For sound waves from the back, the bilayer metasurface still serves as a sound barrier with low transmission. Our results present a strategy to realize high sound absorption and free air flow simultaneously, and could find applications in building acoustics and noise remediation.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


1986 ◽  
Vol 1 (1) ◽  
pp. 139-143
Author(s):  
P. A. Tick

BeF2 glasses are potentially useful materials for light transmission in the near infrared region of the spectrum. While the intrinsic attenuation of BeF2 is thought to be much lower than silica, the optimum wavelength will be further in the infrared, near 2.1 μ. In this spectral region impurities other than transition metals may be important—rare earths, for example. The data required to estimate the contributions to attenuation are normally not available; hence it is the purpose of the present work to provide that information. Using a binary BeF2/ThF4 glass, the optical absorption spectra of a number of rare earths are measured. The experimental procedures, optical spectra, and absorption strength are described.


Sign in / Sign up

Export Citation Format

Share Document