scholarly journals Experimental Study on Drilling MDF with Tools Coated with TiAlN and ZrN

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 386 ◽  
Author(s):  
Krzysztof Szwajka ◽  
Joanna Zielińska-Szwajka ◽  
Tomasz Trzepiecinski

There is increasing use of wood-based composites in industry not only because of the shortage of solid wood, but above all for their better properties such as: strength, aesthetic appearance, etc., compared to wood. Medium density fiberboard (MDF) is a wood-based composite that is widely used in the furniture industry. The goal of the research conducted was to determine the effect of the type of coating on the drill cutting blades on the value of thrust force (Ft), cutting torque (Mc), cutting tool temperature (T) and surface roughness of the hole in drilling MDF panels. In the tests, three types of carbide drills (HW) were used: not coated, TiAlN coated and ZrN coated. The measurement of both the thrust force and the cutting torque was carried out using an industrial piezoelectric sensor. The temperature of the cutting tool in the drilling process was measured using an industrial temperature measurement system using a K-type thermocouple. It was found that the value of the maximum temperature of the tool in the drilling process depends not only on the cutting speed and feed rate, but also on the type of coating of the cutting tool. The value of both the cutting torque and the thrust force is significantly influenced by the value of the feed rate and the type of drill coating. The effect of varying plate density on the surface roughness of the hole and the variation of the value of the thrust force is also discussed. The results of the investigations were statistically analyzed using a multi-factorial analysis of variance (ANOVA).

Author(s):  
Krzysztof Szwajka ◽  
Joanna Zielńska-Szwajka ◽  
Tomasz Trzepieciński

There is increasing use of wood-based composites in industry not only because of the shortage of solid wood, but above all for their better properties such as: strength, aesthetic appearance, etc. compared to wood. Medium density fibreboard (MDF) is a wood-based composite that is widely used in the furniture industry. The goal of the research conducted was to determine the effect of the type of coating on the drill cutting blades on the value of thrust force (Ft), cutting torque (Mc), cutting tool temperature (T) and surface roughness of the hole in drilling MDF panels. In the tests three types of carbide drills (HW) were used: not coated, TiAlN coated and ZrN coated. The measurement of both the thrust force and the cutting torque was carried out using an industrial piezoelectric sensor. The temperature of the cutting tool in the drilling process was measured using an industrial temperature measurement system using a K-type thermocouple. It was found that the value of the maximum temperature of the tool in the drilling process depends not only on the cutting speed and feed rate, but also on the type of coating of the cutting tool. The value of both the cutting torque and the thrust force is significantly influenced by the value of the feed rate and the type of drill coating. The effect of varying plate density on the surface roughness of the hole and the variation of the value of the thrust force is also discussed. The results of the investigations were statistically analysed using a multi-factorial analysis of variance (ANOVA).


2020 ◽  
pp. 089270572093916
Author(s):  
Nafiz Yaşar ◽  
Mustafa Günay ◽  
Erol Kılık ◽  
Hüseyin Ünal

In this study, the mechanical and machinability characteristics of chitosan (Cts)-filled polypropylene (PP) composites produced by injection molding method were analyzed. Uniaxial tensile, impact, hardness, and three-point flexural tests were used to observe the influence of Cts filler on the mechanical behavior of PP. For the machinability analysis of these materials, drilling experiments based on Taguchi’s L27 orthogonal array were performed using different drill qualities and machining parameters. Then, machining conditions are optimized through grey relational analysis methodology for machinability characteristics such as thrust force and surface roughness obtained from drilling tests. The results showed that tensile, flexural strength, and percentage elongation decreased while impact strength increased with adding the Cts filler to PP. Moreover, it was determined that the tensile and flexural modulus of elasticity increased significantly and there was a slight increase in hardness. Thrust forces decreased while surface roughness values increased when the Cts filler ratio and feed rate was increased. The optimal machining conditions for minimizing thrust force and surface roughness was obtained as PP/10 wt% Cts material, uncoated tungsten carbide drill, feed rate of 0.05 mm/rev, and cutting speed of 40 m/min. In this regard, PP composite reinforced by 10 wt% Cts is recommended for industrial applications in terms of both the mechanical and machinability characteristics.


2011 ◽  
Vol 188 ◽  
pp. 372-375
Author(s):  
H.L. Zhang ◽  
Jin Chen

Drilling is one of the complex machining processes, which has been widely applied in the manufacturing area. In this paper, a 3D coupled thermo-mechanical finite element model was used for simulating the thrust force, torque and von Mises equivalent stress at different cutting conditions. The J-C damage model (shear failure) was used in conjunction with the J-C plasticity model, as well as the continuous adaptive remeshing technical. The results show that the thrust force and torque increase with the increasing of the cutting speed and feed rate, and the influence of the feed rate is more obviously.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


Author(s):  
Do Thi Kim Lien ◽  
Nguyen Dinh Man ◽  
Phung Tran Dinh

In this paper, an experimental study on the effect of cutting parameters on surface roughness was conducted when milling X12M steel. The cutting tool used in this study is a face milling cutter. The material that is used to make the insert is the hard alloy T15K6. The cutting parameters covered in this study include the cutting speed, the feed rate and depth of cut. The experiments are performed in the form of a rotating center composite design. The analysis shows that for both Ra and Rz: (1) the feed rate has the greatest influence on the surface roughness while the depth of cut, the cutting speed has a negligible effect on the surface roughness. (2) only the interaction between the feed rate and the depth of the cut has a significant effect on both Ra and Rz while the interaction between the cutting speed and the feed rate, the interaction between the cutting speed and the depth of cut have a negligible effect on surface roughness. A regression equation showing the relationship between Ra, Rz, and cutting parameters has also been built in this study.


2020 ◽  
Vol 17 (5) ◽  
pp. 661-674 ◽  
Author(s):  
Sathiyamoorthy Margabandu ◽  
Senthilkumar Subramaniam

Purpose This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites. Design/methodology/approach The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes. Findings The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev. Originality/value The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


2018 ◽  
Vol 779 ◽  
pp. 153-158
Author(s):  
Phacharadit Paengchit ◽  
Charnnarong Saikaew

This work investigated the influences of cutting speed and feed rate on surface roughness in hard turning of AISI 4140 chromium molybdenum steel bar using mixed ceramic inserts Al2O3+TiC under dry condition for automotive industry applications. Turning experiments were conducted by varying cutting speed ranging from 150 to 220 m/min and feed rate ranging from 0.06 to 1 mm/rev. General factorial design was used to analyze the data set of surface roughness and determine statistically significant process factors based on analysis of variance results. The results showed that average surface roughness was significantly affected by feed rate and interaction between cutting speed and feed rate at the level of significance of 0.05. An optimal operating condition for hard turning of AISI 4140 with the ceramic cutting tool that produced a minimum machined surface roughness was obtained at cutting speed of 220 m/min and 0.06 mm/rev.


2018 ◽  
Vol 211 ◽  
pp. 03011
Author(s):  
Nitin Ambhore ◽  
Dinesh Kamble ◽  
Satish Chinchanikar

The changing behavior of vibration signals with varying cutting parameters (cutting speed, feed rate and depth of cut) for turning hardened AISI52100 steel has been studied and reported. The vibration response of cutting tool in all three mutually perpendicular directions, namely, in feed Vx, radial Vy and, tangential Vz directions have been captured by mounting piezoelectric tri-axial accelerometer close to the cutting tool. Experiments are planned and conducted as per Central composite rotatable design of Surface response methodology. The second order multiple regression models are developed to correlate cutting parameters with vibration acceleration and surface roughness. The coefficient of regression R2 for all models is found close to 0.92 which shows that the developed models are reliable and provide an excellent explanation between the cutting parameter and the vibration of cutting tool within limits. The analysis of the results revealed that cutting conditions are having prominent and mixed type effect on vibration signals. The acceleration amplitude Vx, Vy and Vz increases with increase in cutting speed, and depth of cut. The vibration amplitude Vx, Vy and Vz initially increases as feed increases and, with further increase in feed, the vibration amplitude decreases. The surface roughness is highly influenced by the feed rate followed by cutting speed whereas the depth of cut was found less significant. The fluctuation in frequency is observed in all directions. However, the band of frequency remains within a certain range. Within selected cutting parameter range, the maximum acceleration amplitude is observed in frequency band of 4 kHz - 16 kHz.


2011 ◽  
Vol 228-229 ◽  
pp. 925-929
Author(s):  
Ya Dong Gong ◽  
Zhi Guang Fan ◽  
Yu Zhuo Shen ◽  
Li Yao

The grind test is detected curve of the grinding surface roughness of thin in use of three-dimensional contour in this paper, major influence factor in the accuracy of surface roughness is proposed in the analysis based on grinding surface roughness.Trend of the grinding surface roughness is simulated in Matlab. It is expected that best surface roughness can be obtained by selecting the appropriate cutting speed and feed rate for the material pair of workpiece and cutting tool.


Sign in / Sign up

Export Citation Format

Share Document