scholarly journals Smart Hydrogels in Tissue Engineering and Regenerative Medicine

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3323 ◽  
Author(s):  
Somasundar Mantha ◽  
Sangeeth Pillai ◽  
Parisa Khayambashi ◽  
Akshaya Upadhyay ◽  
Yuli Zhang ◽  
...  

The field of regenerative medicine has tremendous potential for improved treatment outcomes and has been stimulated by advances made in bioengineering over the last few decades. The strategies of engineering tissues and assembling functional constructs that are capable of restoring, retaining, and revitalizing lost tissues and organs have impacted the whole spectrum of medicine and health care. Techniques to combine biomimetic materials, cells, and bioactive molecules play a decisive role in promoting the regeneration of damaged tissues or as therapeutic systems. Hydrogels have been used as one of the most common tissue engineering scaffolds over the past two decades due to their ability to maintain a distinct 3D structure, to provide mechanical support for the cells in the engineered tissues, and to simulate the native extracellular matrix. The high water content of hydrogels can provide an ideal environment for cell survival, and structure which mimics the native tissues. Hydrogel systems have been serving as a supportive matrix for cell immobilization and growth factor delivery. This review outlines a brief description of the properties, structure, synthesis and fabrication methods, applications, and future perspectives of smart hydrogels in tissue engineering.

MRS Bulletin ◽  
2003 ◽  
Vol 28 (4) ◽  
pp. 301-306 ◽  
Author(s):  
Jeffrey M. Karp ◽  
Paul D. Dalton ◽  
Molly S. Shoichet

AbstractDevices for tissue engineering comprise scaffolds with the appropriate chemistry and architecture to promote cell infiltration and colonization. The scaffold is designed with biology in mind, and thus the architecture and chemistry differ according to tissue type. In this review, we focus on scaffolds for two tissue types—bone and nervous tissue—and describe different approaches used to create them. The appropriate scaffold for a hard tissue such as bone has a high degree of interconnected macroporosity and allows the rapid invasion of cells while maintaining a rigid structure. Several approaches are described for constructing tissue-engineering scaffolds for bone. The appropriate scaffold for soft tissues like nerve fibers (e.g., axons, which conduct nerve impulses) also has a high degree of interconnected pores; however, the pores may require orientation and may be smaller. Homogeneous, high-water-content hydrogels with mechanical properties that match the soft nerve tissue are commonly used as a scaffold, and the methods used to make these are reviewed.


2014 ◽  
Vol 2 (33) ◽  
pp. 5319-5338 ◽  
Author(s):  
John A. Hunt ◽  
Rui Chen ◽  
Theun van Veen ◽  
Nicholas Bryan

Injectable hydrogels have become an incredibly prolific area of research in the field of tissue engineering and regenerative medicine, because of their high water content, mechanical similarity to natural tissues, and ease of surgical implantation, hydrogels are at the forefront of biomedical scaffold and drug carrier design.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2020 ◽  
Vol 8 (7) ◽  
pp. 481 ◽  
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Natalia N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Andrey V. Kalinin

The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.


2010 ◽  
Vol 76 ◽  
pp. 114-124
Author(s):  
Seeram Ramakrishna ◽  
Jayarama Reddy Venugopal ◽  
Susan Liao

Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of extracellular matrix (ECM) for tissue/organ regeneration. Nanofibers with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structure. Studies on cell-nanofiber interactions have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Our recent data showed that hematopoietic stem cells (HSCs) as well as mesenchymal stem cells (MSCs) can rapidly and effectively attached to the functionalized nanofibers. Mineralized 3D nanofibrous scaffold with bone marrow derived MSCs has been applied for bone tissue engineering. The use of injectable nanofibers for cardiac tissue engineering applications is attractive as they allow for the encapsulation of cardiomyocytes/MSCs as well as bioactive molecules for the repair of myocardial infarction. Duplicate 3D heart helix microstructure by the nanofibrous cardiac patch might provide functional support for infarcted myocardium. Furthermore, clinical applications of electrospun nanofibers for regenerative medicine are highly feasible due to the ease and flexibility of fabrication with the cost-effective method of making nanofibers.


2018 ◽  
Vol 30 (05) ◽  
pp. 1850031
Author(s):  
Parastoo Namdarian ◽  
Ali Zamanian ◽  
Azadeh Asefnejad ◽  
Maryam Saeidifar

In recent years, the strategy of using microspheres as drug carrier system has been very much considered. Also the use of natural polymers for pharmaceutical applications is very attractive. Given that various polymer materials are available for making microspheres, there is an active research to develop new, safe and effective release for microspheres. Olibanum is used as a drug carrier in this study. Also dexamethasone (DEX) is one of the commonly bioactive molecules used in bone tissue engineering. In this research, the purification and characterization of olibanum were first studied by FTIR, XRD, pH determination and MTT test. Due to its non-toxicity, biocompatibility, availability and biodegradability, this material can be a good choice as a natural polymer. Then the microspheres were synthesized with single emulsion method and studied by SEM and FTIR. The morphology and structure of the microspheres revealed that they are spherical and separate, which have rough and porous surface. Also the release mechanism of drug from olibanum microspheres was determined in accordance with the different kinetic drug release models. Investigating the drugs release behavior and degradation rate of microspheres revealed that they were suitable for dexamethasone-controlled release and can be used well in tissue engineering scaffolds.


2016 ◽  
Vol 10 (1) ◽  
pp. 862-876 ◽  
Author(s):  
R. Kumar ◽  
M. Griffin ◽  
P.E. Butler

Background: Cartilage is an important tissue found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue engineering are multidisciplinary areas of research that integrate biological and engineering principles for the purpose of restoring premorbid tissue function. Biomaterial science traditionally focuses on the replacement of diseased or damaged tissue with implants. Conversely, tissue engineering utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine. Methods: Searches were conducted on Pubmed using the terms “cartilage”, “reconstruction”, “nanotechnology”, “nanomaterials”, “tissue engineering” and “biomaterials”. Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within. Results: The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond in vitro and in vivo experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the tissue engineering and biomaterial fields. Conclusion: Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1824 ◽  
Author(s):  
Sandra Pina ◽  
Viviana P. Ribeiro ◽  
Catarina F. Marques ◽  
F. Raquel Maia ◽  
Tiago H. Silva ◽  
...  

During the past two decades, tissue engineering and the regenerative medicine field have invested in the regeneration and reconstruction of pathologically altered tissues, such as cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to guide the development of functional engineered tissues, and provide mechanical support during in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials, and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials, owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials, current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing, and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and multi-cellular interactions of native tissues for further use for in vitro model processing are also outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds and hydrogels, challenges, and future prospects of research in the regenerative medicine field are also presented.


2010 ◽  
Vol 88 (3) ◽  
pp. 173-184 ◽  
Author(s):  
Jung Kwon Oh

Microgels/nanogels (micro/nanogels) are promising drug-delivery systems (DDS) because of their unique properties, including tunable chemical and physical structures, good mechanical properties, high water content, and biocompatibility. They also feature sizes tunable to tens of nanometers, large surface areas, and interior networks. These properties demonstrate the great potential of micro/nanogels for drug delivery, tissue engineering, and bionanotechnology. This mini-review describes the current approaches for the preparation and engineering of effective micro/nanogels for drug-delivery applications. It emphasizes issues of degradability and bioconjugation, as well as loading/encapsulation and release of therapeutics from customer-designed micro/nanogels.


Sign in / Sign up

Export Citation Format

Share Document