scholarly journals Experimental Study of Cement Alkali-Resistant Glass Fiber (C-ARGF) Grouting Material

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 605 ◽  
Author(s):  
Zhenyue Shi ◽  
Qingbiao Wang ◽  
Lei Xu

Mixing alkali-resistant glass fiber (ARGF) into grouting slurry can prevent the development of cracks; thus, understanding the properties of ARGF grouting material is important for applications in engineering. Two types of ARGFs (Cem-FIL®60 and Anti-Crak®HD) were selected as mixing materials, and their performance was tested in four areas, namely, compressive strength, tensile strength, flexural strength, and impervious performance, under four different mixing amounts of fiber (0%, 0.25%, 0.5%, and 1.0%). Results demonstrate that the addition of ARGF increased the compressive strength and tensile strength of the grouting slurry, and the best performance was at 0.5%. The effect on the flexural strength and impervious performance was related to the mixing amount, and the fiber may have induced a counter-effect for certain amounts of added ARGF. Mixing ARGF could increase the early strength ratio of grout; however, a high early strength ratio did not necessarily result in high strength, as the flexural strength did not change synchronously with the early strength ratio; a similar pattern was found for the impermeability. Cem-FIL®60 had a better effect on the properties of grouting materials than Anti-Crak®HD. These results were successfully applied in the water-plugging and reinforcement engineering of a karst tunnel.

2013 ◽  
Vol 477-478 ◽  
pp. 990-995
Author(s):  
Xiao Ping Zhang ◽  
Chang Zheng Sun ◽  
Tong Feng Zhao

Super early strength high performance grouting material was produced using high alumina cement, ordinary portland cement, gypsum and silica fume. The different glue sand ratio and the cement sand ratio 1.0 mix microstructure were studied systematically. The results showed that the system with a variety of admixture using hingh mortar ratio can be prepared for the initial flow ratio greater than 325{mm},, 30min flow greater than 280{mm}, 2h compressive strength 34.80{MPa}, 24h bending over 13.82{MPa}, 28d compressive strength greater than 99.90{MPa}, 28d compressive strength greater than 56d compressive strength. The system of early SEM microstructures showed good crystal growth, structure compact.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Liu ◽  
Liming Yin ◽  
Juntao Chen ◽  
Ming Li ◽  
Daozeng Tang ◽  
...  

Based on laboratory experiments, the paper researches the effect of polyvinyl alcohol (PVA) content on the performance of fly ash-based cement grouting materials. The test results show that the addition of PVA has limited effect on the initial and final setting time and brings a certain but minor delay on the appearance of the hydration peak period. It enhances cement hydration during the hydration slow down period. The impermeability of PVA to the grouting material is obviously improved, and it increases with the growing amount of PVA content. PVA improves the flexural strength and compressive strength of the sample block to varying degrees, and the improvement on flexural strength is more obvious than that on the compressive strength. It has a significant effect on the mechanical properties of the grouting material and can effectively improve the rock mass’s hydraulic coupling characteristics. It also has great application value and practical significance for the prevention and control of water hazards in deep coal stopes.


2019 ◽  
Vol 258 ◽  
pp. 01020
Author(s):  
Rahmi Karolina ◽  
Abdiansyah Putra Siregar

One of the development of concrete technology in construction’s world is Self-Compacting Concrete. Self-Compacting Concrete (SCC) is an innovative concrete that able to “flow” and condensed by gravity and its own weight with little vibration or even without a vibration device at all. However, these concrete still have deficiencies like general concrete that is weak to tensile. To increase the tensile strength of the concrete is by adding fiber into the mix. One type of fiber that can be used as an additive to the mix is Polypropylene fibers. This study aims to determine the effect of adding polypropylene fibers to the mechanical properties and characteristics of SCC concrete and to know the optimal polypropylene fiber content in the manufacture of Self Compacting Concrete. Fiber addition variations are 0 kg / m3; 0.25 kg / m3; 0.5 kg / m3 and 0.75 kg / m3. The result of the research showed that the variation of 0.5 kg / m3 and 0.75 kg / m3 addition of fibers didn’t fulfill the requirements to be categorized as a SCC concrete. The results of hard concrete test showed the highest compressive strength that is on the SCC PP concrete of 22.31 MPa at the age of 1 day and 46.24 at the age of 28 days. The highest strength is on the SCC 0.25 PP concrete of 6.52 MPa at the age of 1 day and 10.07 at the age of 28 days. The highest flexural strength is on the SCC 0.25 PP concrete of 6.76 at the age of 1 day and 8.60 at the age of 28 days.


2019 ◽  
Vol 276 ◽  
pp. 01008
Author(s):  
Fauzan ◽  
Rudy Kurniawan ◽  
Claudia Lovina A. N ◽  
Oscar Fitrah N ◽  
Putri Basenda T

The utilization of steel fiber from waste tyres can be an alternative to reduce waste tyres due to the increase of tyre production in Indonesia annually. Steel fiber from waste tyre can be added to concrete mix to improve the concrete properties. In this study, the effects of steel fiber waste tyre (SFWT) on high strength concrete containing fly ash was investigated experimentally. The content of fly ash in the high strength concrete is 30% of being partially replaced the cement weight. Steel fiber waste tyres are obtained from extracting the steel wire of the waste tyres and then cut into 4 cm long. The addition of SFWT on the high strength fly ash concrete is 0.5%, 1.0%, 1.5%, and 2% by concrete volume. The mechanical properties of concrete such as compressive strength, tensile strength, and flexural strength are tested at day 28. The test results show that the addition of 2 % SFWT on high strength fly ash concrete increase the compressive strength, tensile strength, and flexural strength of the concrete by around 9.99 %, 63.75 %, 18.18 %, respectively.


2012 ◽  
Vol 174-177 ◽  
pp. 1388-1393
Author(s):  
Hai Qing Song ◽  
Teng Long Zheng

Plain concrete is susceptible to cracking under aggressive environment such as in freezing shaft. And addition of steel fibres in plain high strength concrete is proved to be effective in cracking resistance and brittleness improvement, etc. This paper presents results of experimental investigation carried out to study the mechanical properties of steel fibre-reinforced concrete having volume fractions of 0.38%, 0.51% and 0.64% for two types of fibres respectively. The results of this study revealed that there is an increase for all the mechanical properties such as compressive strength, split tensile strength, modulus of elasticity and flexural strength. Enhancement for split tensile strength and flexural strength is more evident than compressive strength.


2021 ◽  
Vol 3 (3) ◽  
pp. 49-61
Author(s):  
Meisye Mitha Siranga ◽  
Suryanti Rapang Tonapa ◽  
Frans Phengkarsa

The use of concrete in Indonesia cannot be separated from skyscrapers, bridges with long spans, and underground buildings which generally have a larger load, so the use of high-strength concrete is necessary. This study aims to determine the value of compressive strength, split tensile strength, flexural strength, modulus of elasticity of concrete and determine the workability of fresh concrete with the addition of 0.8% superplaticizer. The test objects used in the form of cylinders with a diameter of 15 cm and a height of 30 cm as many as 15 pieces, and 3 pieces of blocks measuring 15 cm × 15 cm × 60 cm. From the results of the study, the compressive strength value was 43,007 MPa. The split tensile strength test is 3.584 MPa. The flexural strength test is 4,340 MPa. The elastic modulus test is 28447.956 MPa. From the slump test on fresh concrete with the addition of a superplaticizer, it is obtained by 10 cm.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Dhanalakshmi A ◽  
M. Shahul Hameed

High-strength self-compacting concrete (HSSCC) is widely used as an eco-effective structure that is more durable than traditional cement that is more prone to demolitions and damage. One of today’s notable innovations is self-compacting concrete (SCC). The variety of materials and the utilization of siphons encourage the concrete’s use, which is significant. The worries about complex pieces are understandable due to the ease, with which precarious projecting zones are formed. This article presents high-strength self-compacting concrete, including quartz sand (QS) and marble-sludge powder (MSP) used as a partial replacement of fine aggregate (M sand). The substitution impact of QS and MSP on the strength of HSSCC is investigated. Further, V-funnel, L-box, slump flow, J-ring and slump cone are used to investigate the chemical, physical and mechanical properties such as splitting tensile strength, compressive strength, bond strength and flexural strength. The replacement of fine aggregate with 15 % of marble-sludge powder and 45 % of quartz sand (HSSCC concrete) gives an unprecedented outcome in the form of solidity and consistency. The findings show that the HSSCC 9 mix exhibits the compressive strength, splitting tensile strength, flexural strength and, more noteworthy, bond strength of 82.25 MPa, 8.10 MPa, 27.10 MPa and 11.89 MPa, respectively.


2019 ◽  
Vol 9 (2) ◽  
pp. 202-207
Author(s):  
Imad R. Mustafa ◽  
Omar Q. Aziz

An experimental program is carried out to evaluate the mix design and mechanical properties of normal strength concrete (NSC) grade 40 MPa and high-strength concrete grade 60 and 80 MPa. The study investigates using silica fume to produce high-strength concrete grade 80 MPa and highlights the influence of adding steel fiber on the mechanical properties of normal and high-strength concrete. For NSC, the compressive strength is found at 7 and 28 days. While for higher strength concrete, the compressive strength is determined at 7, 28, and 56 days. The splitting tensile strength and flexural strength is determined at 28 days. Based on results, the specimens with 14% silica fume are higher compressive strength than the specimens with 10% silica fume by 21.8%. The presence of steel fiber increased the compressive strength of normal and high-strength concrete at 7, 28, and 56 days curing ages with different percentage and the steel fiber has an important role in increasing the splitting tensile strength and flexural strength of normal and high-strength concrete.


2014 ◽  
Vol 507 ◽  
pp. 300-305
Author(s):  
Chang Zheng Sun ◽  
Xiao Ping Zhang ◽  
Hai Nan Zhao ◽  
Qiang Gao

The gradation of coarse sand, medium sand and fine sand on fluidity initial, final setting time, flexural strength, compressive strength, and other properties and structure, of ultra early strength grouting material, was explored. The quartz sand gradation of cement sand ratio 1.0 was systematically studied. The results showed that, the coarse sand, medium sand and fine sand mixed according to the reasonable distribution, when glue sand ratio was 1.0-1.5, ultra-early-strength grouting material, with final setting time for 50-60(min), the initial fluidity greater than 320(mm), 0.5h fluidity greater than 280(mm), 2h compressive strength of 35.6(MPa), 1d flexural strength greater than 13(MPa), 28d compressive strength over 93(MPa), achieved the free vibration.


2018 ◽  
Vol 19 (2) ◽  
pp. 30-42
Author(s):  
Md. Nazmul Huda ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam ◽  
Walid A. Al-Kutti

The performance of high strength structural lightweight concrete (LWC) using the palm wastes, oil palm shell (OPS) as well as palm oil clinker (POC) has been reported. Existing literatures used either OPS or POC individually for production of LWC. Each concept has their own advantages-disadvantages. In this study, both OPS and POC have been put together as coarse aggregate on the way to see the improvement of mechanical properties of waste based LWC. To achieve this purpose, regular coarse aggregate has been fully replaced by OPS and POC in the concrete. This structural grade lightweight concrete is named as palm shell and clinker concrete (PSCC). Attempts have been made with the series of OPS and POC mixture aimed at identifying for better performance. The quantity of OPS and POC mix has been varied as 30%, 40%, 50%, 60% and 70%. Mechanical properties of PSCC like density, workability, compressive strength at different ages, flexural strength, splitting tensile strength as well as modulus of elasticity have been evaluated. It is revealed that the proposed PSCC has extensive potential in terms of high compressive strength and good material behavior to perform as a better LWC. The study could offer structural lightweight concrete of compressive strength up to 46 MPa that is 31% higher than the control mix. The usage of 50% OPS to 50% POC coarse aggregate by vol. in the concrete mix is found to be the optimum mix. Furthermore, simple correlations have been developed which can easily predict compressive strength, splitting tensile strength, flexural strength, modulus of elasticity and ultrasonic pulse velocity of lightweight concrete.


Sign in / Sign up

Export Citation Format

Share Document