scholarly journals Effect of Calcium Stearate in the Mechanical and Physical Properties of Concrete with PCC and Fly Ash as Binders

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1394 ◽  
Author(s):  
Agus Maryoto ◽  
Buntara Sthenly Gan ◽  
Nor Intang Setyo Hermanto ◽  
Rachmad Setijadi

This work aims to study the effect of Ca(C18H35O2)2 (calcium stearate) on the properties of concrete by using Portland composite cement (PCC) and fly ash as binders. The calcium stearate content used in the concrete here consists of 0, 1, 5, and 10 kg per m3 of concrete volume, or alternatively, 0 to 2.85% by the weight of cement. We have performed several tests for each of the contents, namely, compressive strength, water absorption, chloride ion infiltration, and accelerated corrosion tests. According to the testing, we have found that with the addition of calcium stearate at 1 kg/m3 in self-compacting concrete (SCC) with 10% fly ash, the mechanical and physical properties of SCC can be improved significantly when compared to the SCC without fly ash and calcium stearate, resulting in a stable compressive strength, lower water absorption, lower chloride ion infiltration, and lower degree of corrosion attack.

2017 ◽  
Vol 26 (2) ◽  
pp. 234-240
Author(s):  
Jakub Jura ◽  
Małgorzata Ulewicz

Paper presents the possibility of using fly ash from the combustion of two types biomass in fluidized bed boiler to modifications cement mortars composition. The influence of the use of ashes on their mechanical and physical properties (compressive strength, frost resistance, water absorption) of cement mortars. In research part of standarized sand was replaced by fly ash from the combustion of wood with coconut husks and wood with sunflower in the amount of 10, 20 and 30% by weight of cement. The addition of ash, depending on the composition, increase the compressive strength about 17%, decrease a reduction compressive strength after frost resistance tests to 0,5% and slightly increases weight loss and absorbency.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Daniela Eugenia Angulo-Ramírez ◽  
William Gustavo Valencia-Saavedra ◽  
Ruby Mejía de Gutiérrez

Concretes based on alkaliactivated binders have attracted considerable attention as new alternative construction materials, which can substitute Portland Cement (OPC) in several applications. These binders are obtained through the chemical reaction between an alkaline activator and reactive aluminosilicate materials, also named precursors. Commonly used precursors are fly ash (FA), blast furnace slag (GBFS), and metakaolin. The present study evaluated properties such as compressive strength, rate of water absorption (sorptivity), and chloride permeability in two types of alkaliactivated concretes (AAC): FA/GBFS 80/20 and GBFS/OPC 80/20. OPC and GBFS/OPC* concretes without alkaliactivation were used as reference materials. The highest compressive strength was observed in the FA/GBFS concrete, which reported 26,1% greater strength compared to OPC concrete after 28 days of curing. The compressive strength of alkaliactivated FA/GBFS 80/20 and GBFS/OPC 80/20 was 61 MPa and 42 MPa at 360 days of curing, respectively. These AAC showed low permeability to the chloride ion and a reduced water absorption. It is concluded that these materials have suitable properties for various applications in the construction sector.


2017 ◽  
Vol 888 ◽  
pp. 37-41
Author(s):  
Hasrul Yahya ◽  
Mohd Roslee Othman ◽  
Zainal Arifin Ahmad

Porcelain balls as grinding media are produced by firing process of clay, quartz and feldspar mixtures. This application need high technological properties such as high compressive strength and hardness, wear resistance, low water absorption and excellent chemical resistance. These properties are associated with higher firing temperatures. The porcelain balls were prepared by mixing 30 wt.% clay, 40 wt.% feldspar and 30 wt.% quartz. The samples were sintered at 1200°C, 1230°C, 1250°C, 1270°C and 1300°C for 2 hours with heating rate of 3°C/min. Both green powder and fired samples were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM).The properties of the fired samples were evaluated by compressive strength, hardness, shrinkage, water absorption, bulk density, and porosity measurement. Increasing of compressive strength, hardness and density are associated with increasing of firing temperatures. Porcelain balls PB1 and PB2 can be produced as grinding media with optimum mechanical and physical properties at firing temperature 1270°C and 1250°C, respectively.


2011 ◽  
Vol 250-253 ◽  
pp. 307-312 ◽  
Author(s):  
Muthuramalingam Jayakumar ◽  
M. Salman Abdullahi

Even though the use of fly ash in concrete is nowadays a common practice, its relatively slow pozzolanic reactivity hinders its greater utilization; hence efficient methods of activation are on demand. This study was carried out to evaluate the influence of lime as a chemical activator on the mechanical and durability properties of high strength fly ash concrete. Mixtures were made with 0, 30, 40, and 50% of cement replaced by low calcium fly ash. Corresponding mixtures were also made with the same amount of fly ash and addition of 10% of lime to each mixture. For each concrete mixture, slump, compressive strength, water absorption, sorptivity, apparent volume of permeable voids, and resistance to chloride-ion penetration were measured. The results obtained showed that addition of lime improved the compressive strength significantly at all ages. The strength of all the fly ash mixtures containing lime surpassed that of the corresponding Portland cement mix at 60 days. Addition of lime also improved the sorptivity and resistance to chloride-ion penetration of the fly ash concrete. It however increases the water absorption and the volume of permeable voids of the fly ash concrete.


2014 ◽  
Vol 625 ◽  
pp. 46-49 ◽  
Author(s):  
Rosniza Hanim Abdul Rahim ◽  
Khairun Azizi Azizli ◽  
Zakaria Man ◽  
Tia Rahmiati ◽  
Lukman Ismail

Geopolymer is produced from the alkali activation of materials rich in Si and Al with addition of silicate solution in order to improve the mechanical property. Limited research has been done with the absence of silicate solution in the geopolymerization process by varying solid/liquid ratio and on how it works for that condition on mechanical and physical properties. This paper presents an investigation on the mechanical and physical properties of fly ash based geopolymer by varying solid to liquid ratio using sodium hydroxide as the only activator. In addition, the strength development also been investigated. The samples were prepared using 50mm x 50mm x 50mm mould and cured at an elevated temperature (60oC). It can be observed that the optimum compressive strength and density were obtained at solid/ liquid ratio of 4. In addition, the compressive strength of fly ash based geopolymer for all the solid to liquid ratio increased until 14 days and started to decrease later.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2096250
Author(s):  
Masturi ◽  
WN Jannah ◽  
RM Maulana ◽  
T Darsono ◽  
Sunarno ◽  
...  

A teak leaf waste/polyurethane composite has been made for particleboard application. Some fraction variations are performed on the use of polyurethane as a matrix with a range of 0.04–0.20 (w/w). Mechanical and physical properties have been tested on the composites produced. The test results showed that the highest compressive strength of the sample reaches 38.5 MPa for polyurethane fraction of 0.14 (w/w). The composite has a density of 1261 kg m−3 which is in accordance with the result of density on teak. The physical properties have been also investigated and it was found that the lowest value of water absorption is 1.38%. This result indicated that the composites produced are potentially to replace wood raw material in eco-friendly industrial scale.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 532 ◽  
Author(s):  
Jianwei Zhou ◽  
Dong Lu ◽  
Yuxuan Yang ◽  
Yue Gong ◽  
Xudong Ma ◽  
...  

This paper presents the experimental findings of a study on the influence of combining usage of supplementary cementitious materials (SCMs) on the performance of high-strength concrete (HSC) subjected to elevated temperatures. In this study, four types of HSC formulations were prepared: HSC made from cement and fly ash (FA), HSC made from cement and ultra-fine fly ash (UFFA), HSC made from cement and UFFA-metakaolin (MK), and HSC made from cement and FA-UFFA-MK. Mechanical and physical properties of HSC subjected to high temperatures (400, 600, 800, and 1000 °C) were studied. Furthermore, the relation between residual compressive strength and physical properties (loss mass, water absorption, and porosity) of HSC was developed. Results showed that the combined usage of SCMs had limited influence on the early-age strength of HSC, while the 28-d strength had been significantly affected. At 1000 °C, the residual compressive strength retained 18.7 MPa and 23.9 MPa for concretes containing 30% UFFA-5% MK and 10% FA-20% UFFA-5% MK, respectively. The specimen containing FA-UFFA-MK showed the best physical properties when the temperature raised above 600 °C. Combined usage of SCMs (10% FA-20% UFFA-5% MK) showed the lowest mass loss (9.2%), water absorption (10.9%) and porosity (28.6%) at 1000 °C. There was a strongly correlated relation between residual strength and physical properties of HSC exposed to elevated temperatures.


2013 ◽  
Vol 753-755 ◽  
pp. 750-753
Author(s):  
Li Rong Yang ◽  
Hai Bin Chen ◽  
Chun Mei Wang ◽  
Li Zhang

Using iron tailings from northern Tangshan region of China as the main material, fly ash and clay as the accessories, fired bricks were prepared. The influences of iron tailings content, heating rate, firing temperature and holding time on water absorption and compressive strength of bricks were investigated. the phases of fired bricks was characterized by XRD. The most suitable conditions is as follows: the range of the iron tailings content is 80%~ 95%, no more than 8°C/min has little effect on the properties of fired bricks, the range of feasible calcined temperature could be adjusted in 1020 ~ 1050°C for 1.5~2h, which make the physical properties and durability of fired bricks accorded with Chinese Fired Common Bricks Standard (GB/T5101-2003). The main mineral phases mainly constituted the mechanical strength of fired product are hematite, quartz, anorthite and augite.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


Sign in / Sign up

Export Citation Format

Share Document