scholarly journals Biomechanical Loading Comparison between Titanium and Bioactive Resorbable Screw Systems for Fixation of Intracapsular Condylar Head Fractures

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3153
Author(s):  
Shintaro Sukegawa ◽  
Norio Yamamoto ◽  
Keisuke Nakano ◽  
Kiyofumi Takabatake ◽  
Hotaka Kawai ◽  
...  

Osteosynthesis resorbable materials made of uncalcined and unsintered hydroxyapatite (u-HA) particles, poly-L-lactide (PLLA), are bioresorbable, and these materials have feasible bioactive/osteoconductive capacities. However, their strength and stability for fixation in mandibular condylar head fractures remain unclear. This in vitro study aimed to assess the biomechanical strength of u-HA/PLLA screws after the internal fixation of condylar head fractures. To evaluate their biomechanical behavior, 32 hemimandible replicas were divided into eight groups, each consisting of single-screw and double-screw fixations with titanium or u-HA/PLLA screws. A linear load was applied as vertical and horizontal load to each group to simulate the muscular forces in condylar head fractures. Samples were examined for 0.5, 1, 2, and 3-mm displacement loads. Two screws were needed for stable fixation of the mandibular condylar head fracture during biomechanical evaluation. After screw fixation for condylar head fractures, the titanium screws model was slightly more resistant to vertical and horizontal movement with a load for a small displacement than the u-HA/PLLA screws model. There was no statistically significant difference with load for large displacements. The u-HA/PLLA screw has a low mechanical resistance under small displacement loading compared with titanium within the limits of the mandibular head fracture model study.

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1557 ◽  
Author(s):  
Shintaro Sukegawa ◽  
Takahiro Kanno ◽  
Norio Yamamoto ◽  
Keisuke Nakano ◽  
Kiyofumi Takabatake ◽  
...  

Osteosynthesis absorbable materials made of uncalcined and unsintered hydroxyapatite (u-HA) particles, poly-l-lactide (PLLA), and u-HA/PLLA are bioresorbable, and these plate systems have feasible bioactive osteoconductive capacities. However, their strength and stability for fixation in mandibular subcondylar fractures remain unclear. This in vitro study aimed to assess the biomechanical strength of u-HA/PLLA bioresorbable plate systems after internal fixation of mandibular subcondylar fractures. Tensile and shear strength were measured for each u-HA/PLLA and titanium plate system. To evaluate biomechanical behavior, 20 hemimandible replicas were divided into 10 groups, each comprising a titanium plate and a bioresorbable plate. A linear load was applied anteroposteriorly and lateromedially to each group to simulate the muscular forces in mandibular condylar fractures. All samples were analyzed for each displacement load and the displacement obtained by the maximum load. Tensile and shear strength of the u-HA/PLLA plate were each approximately 45% of those of the titanium plates. Mechanical resistance was worst in the u-HA/PLLA plate initially loaded anteroposteriorly. Titanium plates showed the best mechanical resistance during lateromedial loading. Notably, both plates showed similar resistance when a lateromedially load was applied. In the biomechanical evaluation of mandibular condylar fracture treatment, the u-HA/PLLA plates had sufficiently high resistance in the two-plate fixation method.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
António Sérgio Silva ◽  
José Manuel Mendes ◽  
Tiago Araújo ◽  
Carlos Aroso ◽  
Pedro Barreiros

Micromovements of the implant-abutment connection influence peri-implant bone preservation. The maximal torque after a cycle of implant prosthetic screw tightening using original components of different manufacturers and replicas produced by other companies is evaluated and quantified in this study. A total of 30 Mis Seven® standard platform implants and 30 interfaces were used, and 30 standard platform screws were tested, 10 Mis®, 10 Iconekt®, and 10 Exaktus®. The screws were tightened with an MIS® torquemeter until their respective fracture, and the fracture point was measured through the equipment’s load cell, CS-Dental Testing Machine®. The screws were analyzed under an Olympus® SZ61 microscope. The fracture points were recorded and compared among all samples. To compare the mean values of the fracture torques, t-tests were performed using the reference values associated with each brand and the sample results. The variable “Place of Fracture” between the original Mis® brand and the Exaktus® replica compared to the Iconekt® replica presented a statistically significant difference (p < 0.001). When analyzing the variable “Fracture Torque,” although it was verified that the replica screws (Iconekt® and Exaktus®) had a lower maximum torque, 65.11 Nm and 62.89 Nm, respectively, compared to the original Mis® brand (70 Nm and 69 Nm), there were no statistically significant differences p > 0.05. Nonoriginal screws did not present different fracture resistances compared to the original Mis® brand screws. The fracture site of Iconekt® screws showed a different pattern compared to the other brands.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3026
Author(s):  
Bruna Sinjari ◽  
Manlio Santilli ◽  
Gianmaria D’Addazio ◽  
Imena Rexhepi ◽  
Alessia Gigante ◽  
...  

Dentine pretreatment through sandblasting procedures has been widely studied but no curve test results are currently available. Thus, the aim herein was to in vitro compare the adhesive strength in sandblasted or not samples using a universal testing machine. Thirty -two bovine teeth were divided into two groups, namely test (n = 16 bars), sandblasting with aluminum oxide particles (50 µm) was performed before the adhesion procedures), and control (n = 16 bars), where no sandblasting procedure was performed. A bi-material curve test was used to evaluate the characteristics of the dentine pretreatment in terms of tensile stress and fracture strength. A scanning electron microscope (SEM) was used to analyze the fracture topography in the composite, bonding, dentin, and at the relative interfaces. The results demonstrated a statistically significant difference between the two groups in terms of tensile stress at maximum load showing values of 84.300 ± 51.342 MPa and 35.071 ± 16.609 MPa, respectively for test and control groups (p = 0.033). Moreover, a fracture strength test showed values of 18.543 ± 8.145 MPa for test and 8.186 ± 2.833 MPa for control group (p = 0.008). In conclusion, the sandblasting treatment of the dentine significantly influenced the mechanical resistance of the adhesion in this in vitro study.


Author(s):  
Rathika Rai ◽  
M. A. Easwaran ◽  
K. T. Dhivya

Aim: To evaluate the surface detail reproduction of dental stone this is immersed in different disinfectant solution and studied under stereomicroscope. Methodology: Total number of 30 specimens of dental stone (Type III) were made with measurements of 1.5cm diameter and 1cm height .This samples are divided in to 3 groups group A,B,C. were A is immersed in Distilled water which was taken as control group ;B is immersed in 2% Glutaraldehyde and C is immersed in 5%sodium hypochlorite. Each specimen were immersed in the disinfectant solution for 15 minutes and dried under room temperature for 24 hrs. After 24 hrs each specimens are studied under stereomicroscope for surface details. Result: The results showed no significant difference in the surface irregularities and porosities for a group 1 and group 2 except group 3 which showed significant increase in the porosities, surface irregularities and erosions after disinfection with 5% NaHOCl by immersion method. Conclusion: The surface detail reproduction capacity of die stone was adversely affected when 5% Sodium hypochlorite was used as disinfectant solution when compare d to control group and 2% Glutaraldehyde


2021 ◽  
Vol 11 (2) ◽  
pp. 857
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

The purpose of this in vitro study was to evaluate marginal and internal fits of ceramic crowns fabricated with chairside computer-aided design and manufacturing (CAD/CAM) systems. An experimental model based on ISO 12836:2015 was digitally scanned with different intraoral scanners (Omnicam (CEREC), EZIS PO (DDS), and CS3500 (Carestream)). Ceramic crowns were fabricated using the CAD/CAM process recommended by each system (CEREC, EZIS, and Carestream systems; N = 15). The 3-dimensional (3D) marginal and internal fit of each ceramic crown was measured using a 3D inspection software (Geomagic control X). Differences among the systems and various measurements were evaluated using the Kruskal–Wallis test. Statistically significant differences were validated using pairwise comparisons (α = 0.05). Occlusal gaps in the CEREC, EZIS, and Carestream groups were 113.0, 161.3, and 438.2 µm, respectively (p < 0.001). The axial gaps were 83.4, 78.0, and 107.9 µm, respectively. The marginal gaps were 77.8, 99.3, and 60.6 µm, respectively, and the whole gaps were 85.9, 107.3, and 214.0 µm, respectively. Significant differences were observed with the EZIS system compared with the other two systems in terms of the marginal gap sizes. The CEREC system showed no significant differences among the four measured regions. However, the EZIS and Carestream systems did show a statistically significant difference (p < 0.05). All three systems were judged to be capable of fabricating clinically acceptable prostheses, because the marginal gap, which is the most important factor in the marginal fit of prostheses, was recorded to be below 100 µm in all three systems.


2015 ◽  
Vol 85 (6) ◽  
pp. 920-926 ◽  
Author(s):  
Ricardo Carvalho Bueno ◽  
Roberta Tarkany Basting

ABSTRACT Objective:  To evaluate the proliferation and morphology of human osteoblasts cultured on two brands of mini-implants after 24, 48, and 72 hours, in addition to the chemical composition found on their surface. Materials and Methods:  Two brands of mini-implant (Morelli and Neodent) were evaluated; polystyrene was used as a control group (n  =  3). Osteoblasts were cultured on the surface of sterilized mini-implants in a CO2 incubator at different time periods (24, 48, and 72 hours). Osteoblast proliferation was quantified by scanning electron microscopy using up to 5000× magnification, and cell morphology was analyzed by a single observer. For the chemical analysis, spectroscopy X-ray fluorescence was used to identify and quantify chemical components on the surface of the mini-implants. Results:  Two-way ANOVA showed no significant interaction between the factors studied (P  =  0.686). A Tukey test revealed no significant difference in osteoblast proliferation between the mini-implants at all studied periods; however, a difference in cell proliferation was detected between the Neodent and the control group (P  =  .025). For all groups, time had a direct and positive effect on osteoblast proliferation (P &lt; .001). The significant elements present in both brands of mini-implants were titanium, aluminum, vanadium, and iron. Conclusions:  Osteoblast proliferation was present on the mini-implants studied, which increased over time; however, no significant difference between brands was observed. No difference was seen between the mini-implants evaluated in terms of chemical composition. Cell adhesion after 72 hours suggests that areas of bone remodeling can be achieved, thus initiating the process of mini-implant anchorage.


2021 ◽  
pp. 159101992110573
Author(s):  
Naoki Kaneko ◽  
Ariel Takayanagi ◽  
Hamidreza Saber ◽  
Lea Guo ◽  
Satoshi Tateshima

Objective Neuroendovascular procedures rely on successful navigation and stable access to the target vessel. The Stabilizer is a 300 cm long exchange wire with a 0.014 diameter and a soft, flexible stent at the distal end designed to assist with navigation and device delivery. This study aims to assess the efficacy of the Stabilizer for navigation in a variety of challenging environments. Methods The efficacy of the Stabilizer was evaluated using three challenging vascular models: a giant aneurysm model, a severe tortuosity model, and an M1 stenosis model. The Stabilizer was compared with a conventional wire during navigation in each model. Results In the giant aneurysm model, there was no significant difference of success during straightening of a looped wire and significantly higher success rates when advancing an intermediate catheter with the Stabilizer beyond the aneurysm neck compared to a conventional guidewire. The Stabilizer also significantly increased success rates when advancing an intermediate catheter through a model with severe tortuosity compared to a conventional guidewire, as well as exchange maneuver for intracranial stenting in a stenosis model compared to an exchange wire. Conclusions In our experimental model, the Stabilizer significantly improved navigation and device delivery in a variety of challenging settings compared to conventional wires.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Blerim Kamberi ◽  
Donika Bajrami ◽  
Miranda Stavileci ◽  
Shuhreta Omeragiq ◽  
Fatmir Dragidella ◽  
...  

Aim. The purpose of this in vitro study was to assess the antimicrobial efficacy of Biopure MTAD against E. faecalis in contaminated root canals. Materials and Methods. Forty-two single rooted extracted human teeth were inoculated with E. faecalis and incubated for four weeks. The samples were divided in two control and five experimental groups irrigated with 1.5% sodium hypochlorite solution (NaOCl); 3% NaOCl; BioPure MTAD; 1.5% NaOCl/17% EDTA; or 3% NaOCl/17% EDTA. After a one-week incubation, complete disinfection was confirmed by the absence of turbidity in the incubation media. Dentin shavings were taken from samples with no turbidity to verify whether E. faecalis was present in dentin tubules. Results were analyzed statistically using Fisher's exact test, with the level of significance set at . Results. Statistical analysis of the data obtained at Day 7 and after dentin shaving analysis showed that BioPure MTAD had significantly greater antibacterial activity than 1.5% NaOCl, 1.5% NaOCl/17% EDTA and 3% NaOCl/17% EDTA. No significant difference was detected between MTAD and 3% NaOCl. Conclusions. These findings suggest that BioPure MTAD possesses superior bactericidal activity compared with NaOCl and EDTA against E. faecalis.


2016 ◽  
Vol 17 (12) ◽  
pp. 997-1002 ◽  
Author(s):  
Fahad I Alkhudhairy ◽  
Zeeshan H Ahmad

ABSTRACT Introduction Various bulk-fill materials depending on their composition, viscosity, and flow ability have different physical and mechanical properties. The aim of this in vitro study was to determine and compare the shear bond strength and microleakage properties of activa restorative with other bulk-fill restorative materials surefil (SDR), Biodentine, ever X posterior. Materials and methods Forty permanent premolars were selected for shear bond strength, and 20 permanent premolars were selected with class II cavities on mesial and distal side for microleakage. Universal testing device was used to assess the shear bond strength. Microleakage was checked using dye penetration method under a stereomicroscope. Mean and standard deviation values were calculated from the recorded values. Intergroup comparison was done by one-way analysis of variance (ANOVA) followed by pairwise comparison using Tukey honestly significant difference (HSD) post hoc test. Results The mean shear bond strength was highest for SDR surefil followed by Ever X posterior, Bioactive restorative, and Biodentine respectively. In this study, SDR (surefil) showed better shear bond strength and better microleakage properties compared with the other test materials (F = 186.7157, p < 0.05). Conclusion The result of this study showed that flowable and fiber-reinforced composites have better shear bond strength and microleakage properties. Clinical significance Flowable bulk-fill composite resins can be used as dentin substitutes because of its superior properties. How to cite this article Alkhudhairy FI, Ahmad ZH. Comparison of Shear Bond Strength and Microleakage of Various Bulk-fill Bioactive Dentin substitutes: An in vitro study. J Contemp Dent Pract 2016;17(12):997-1002.


2020 ◽  
Vol 11 (2) ◽  
pp. 160-166
Author(s):  
Mohammad Javad Moghaddas ◽  
Horieh Moosavi ◽  
Sara Yaghoubirad ◽  
Nasim Chiniforush

Introduction: The purpose of this study was to compare the effect of the bioactive glass, the glass ionomer, and the Erbium YAG laser as liners on the remineralization of the affected dentin. Methods: The present study was conducted on 64 healthy extracted human molars divided into 4 groups, 1 control group and 3 experimental groups. After artificially inducing dentinal caries lesions, each of the experimental groups was applied to the cavity floor and then restored with a composite. The samples were stored after thermocycling in an incubator for two months. Finally, the hardness of the cavity floor was measured at 3 depths of 20, 50 and 100 μm by the Vickers microhardness tester. The dentin conditions underneath the liners were also evaluated with FESEM. Statistical analysis was performed by two-way ANOVA and the post-hoc Games-Howell test (P<0.05). Results: Among the groups, the lowest microhardness value was in the control group (P<0.05) except at a depth of 100 μm; therefore, there was no significant difference between the control group and the bioactive glass (P>0.05). The laser group had the highest microhardness value, which was significantly different from the control group (P<0.05). There was a significant difference between the laser and bioactive glass (P<0.05), except at a depth of 20 μm. The laser and glass ionomer had only a significant difference at a depth of 100 μm (P<0.05). The microhardness value induced by glass ionomer was higher than bioactive glass, which in no depth was significant (P>0.05). Partial dentinal tubule occlusion was observed with FESEM in each of the experimental groups as compared to the control group. Conclusion: The microhardness values were higher in all groups than in the control group. The laser might be more successful in remineralization than the other ones.


Sign in / Sign up

Export Citation Format

Share Document