scholarly journals Drilling Burr Minimization by Changing Drill Geometry

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3207
Author(s):  
Emilia Franczyk ◽  
Łukasz Ślusarczyk ◽  
Wojciech Zębala

This article presents an attempt to solve the problem of the formation of burrs and drilling caps in the process of drilling in difficult-to-cut materials, specifically in the titanium alloy Ti-6Al-4V. In order to eliminate these phenomena, a chamfer of specific length and angle was made on FANAR drill’s margin. Taguchi and ANOVA methods were used to plan and analyze the experiment aimed at determining the optimal geometry of the modified drill. Chamfer with a length of 2 mm and an angle of 10° was selected. In the next stage of research, the values of cutting forces and burr heights obtained during drilling with the original and modified drill were compared for three different feed rate values. It turned out that the introduced changes significantly reduced both the axial cutting force (22–23%) and the height of burrs (10–22%) and caused the complete elimination of the presence of drilling caps. Additionally, a positive correlation between the cutting force and the burr size was found.

10.30544/472 ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 303-316
Author(s):  
M. Hatami ◽  
H. Safari

In this paper, L8 Taguchi array is applied to find the most important parameters effects on the radial and tangential cutting forces of a Ti–6Al-4V ELI titanium alloy in dry high speed machining (DHSM). The experiments are performed in four cutting speeds of 150, 200, 250, and 300 m/min and two feed rates of 0.03 and 0.06 mm/rev. Also, two cutting tools in types of XOMX090308TR-ME06 of uncoated (H25) and TiAlN+TiN coated (F40M) are used. Results confirm that to minimize the resultant cutting force and radial cutting force, utilizing the lower feed rate and higher cutting speeds were considered as the best levels of factors to reach to its goal.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


Author(s):  
Amir Mahyar Khorasani ◽  
Ian Gibson ◽  
Moshe Goldberg ◽  
Guy Littlefair

Additive manufacturing (AM), partly due to its compatibility with computer-aided design (CAD) and fabrication of intricate shapes, is an emerging production process. Postprocessing, such as machining, is particularly necessary for metal AM due to the lack of surface quality for as-built parts being a problem when using as a production process. In this paper, a predictive model for cutting forces has been developed by using artificial neural networks (ANNs). The effect of tool path and cutting condition, including cutting speed, feed rate, machining allowance, and scallop height, on the generated force during machining of spherical components such as prosthetic acetabular shell was investigated. Also, different annealing processes like stress relieving, mill annealing and β annealing have been carried out on the samples to better understand the effect of brittleness, strength, and hardness on machining. The results of this study showed that ANN can accurately apply to model cutting force when using ball nose cutters. Scallop height has the highest impact on cutting forces followed by spindle speed, finishing allowance, heat treatment/annealing temperature, tool path, and feed rate. The results illustrate that using linear tool path and increasing annealing temperature can result in lower cutting force. Higher cutting force was observed with greater scallop height and feed rate while for higher finishing allowance, cutting forces decreased. For spindle speed, the trend of cutting force was increasing up to a critical point and then decreasing due to thermal softening.


Author(s):  
Seyed Ali Niknam ◽  
Victor Songmene

The principle objective of this work is to present a methodology to evaluate the correlation between burr size attributes (thickness and height) and information computed from acoustic emission and cutting forces signals. In the proposed methodology, cutting force and acoustic emission signals were recorded in each cutting test, and each recorded original acoustic emission signal was segmented into two sections that correspond to steady-state cutting process (cutting signal) and cutting tool exit from the work part (exit signal). The dominant acoustic emission signal parameters including AEmax and AErms were computed from each segmented acoustic emission signal. The maximum values of directional cutting forces (FX, FY and FZ) were also measured in each trial. The experimental verification was conducted on slot milling operation which has relatively more complicated burr formation mechanism than that in many other traditional machining operations. Among slot milling burrs, the top-up milling side burrs and exit burrs along up milling side were largest and thickest burrs which were studied in this work. To evaluate the correlation between signal information and burr size, the computed signal information (5 parameters) and their interaction effects (10 parameters) were used to construct the input parameters of the multiple regression fitted models. Statistical methods were then used to assess the adequacy of individual input parameters and signal information. Using the acoustic emission and cutting force signals information in the input layer of multiple regression models, a high correlation was observed between the predicted and observed values of burr size. It was exhibited that due to complex burr formation mechanism in milling operation and strong interaction effects between cutting process parameters, no systematic relationship can be formulated between the milling burrs.


HBRC Journal ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 263-269 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
M.N.M. Ansari ◽  
Bashir Mohamed

2014 ◽  
Vol 800-801 ◽  
pp. 81-86
Author(s):  
Zhen Li ◽  
Er Liang Liu ◽  
Teng Da Wang ◽  
Jiao Li ◽  
Yong Chun Zheng

The various feed rate and cutting speed have an important influence on cutting force, tool wear and chip morphology in machining titanium alloy. Cutting experiments are carried out analyzing the titanium alloy Ti6Al4V under different cutting speed and feed rate, the cutting force values are obtained. The analysis results show that the dominant wear pattern is adhesion wear and chipping. And the tool wear also has an influence on chip morphology.


2021 ◽  
Author(s):  
António Festas ◽  
A. Ramos ◽  
J. P. Davim

Abstract The potential and advantages revealed by the application of 3D manufacturing techniques such as Electron Beam Melting (EBM) in the production of medical devices such as orthopaedic implants are increasing manly in custom made devices. However, the use of milling and turning operations are indispensable on surfaces where surface finish and dimensional accuracy have more demanding requirements. This work aims to evaluate the machinability of titanium alloy test samples submitted to turning operations, to obtain the geometry of a functional cone of the modular component of the hip prosthesis. The differences in cutting forces and surface finish obtained in the turning tests are compared between a wrought Ti-6Al-4V test sample and three obtained by EBM with different thicknesses. To perform the tests, a constant cutting speed of 60m/min was used, feed of 0.1 and 0.2mm/rev and ap of 0.15mm. The cutting forces were measured for each test, also the roughness was measured in the form of Ra, Rt and RzD in each test sample. From the results obtained, EBM test samples presented higher roughness values and lower resulting cutting forces. In both materials, the effect of feed rate is visible. When machining a cone, the passive force and the cutting force become the most influential forces. Generally, when the feed rate value was doubled, the resulting machining forces value increased up to about 50% for both types of materials and the Ra value to approximately 200%. The EBM technology as used form medical devices allow good quality surfaces as the wrought titanium alloy.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li ◽  
Mozammel Mia

Cutting force in the machining process of SiCp/Al particle reinforced metal matrix composite is affected by several factors. Obtaining an effective mathematical model for the cutting force is challenging. In that respect, the second-order model of cutting force has been established by response surface methodology (RSM) in this study, with different cutting parameters, such as cutting speed, feed rate, and depth of cut. The optimized mathematical model has been developed to analyze the effect of actual processing conditions on the generation of cutting force for the turning process of SiCp/Al composite. The results show that the predicted parameters by the RSM are in close agreement with experimental results with minimal error percentage. Quantitative evaluation by using analysis of variance (ANOVA), main effects plot, interactive effect, residual analysis, and optimization of cutting forces using the desirability function was performed. It has been found that the higher depth of cut, followed by feed rate, increases the cutting force. Higher cutting speed shows a positive response by reducing the cutting force. The predicted and experimental results for the model of SiCp/Al components have been compared to the cutting force of SiCp/Al 45 wt%—the error has been found low showing a good agreement.


Author(s):  
Wencheng Pan ◽  
Songlin Ding ◽  
John Mo

Cutting force coefficients were conventionally described as the power function of instantaneous uncut chip thickness. However, it was found that the changes in the three controllable machining parameters (cutting speed, feed and axial cutting depth) could significantly affect the values of cutting coefficients. An improved cutting force model was developed in this article based on the experimental investigation of end milling titanium alloy (Ti6Al4V) with polycrystalline diamond tools. The relationships between machining parameters and cutting force are established based on the introduction of the new cutting coefficients. By integrating the effects of varying cutting parameters in the prediction model, cutting forces and the fluctuation of cutting force in each milling cycle were calculated. Validation experiments show that the predicted peak values of cutting forces highly match the experimental results; the accuracy of the model is up to 90% in predicting instantaneous cutting forces.


Sign in / Sign up

Export Citation Format

Share Document