scholarly journals Influence of Geometric Imperfections on Buckling Resistance of Reinforcing Bars during Inelastic Deformation

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3473
Author(s):  
Jacek Korentz

This paper presents the results of numerical simulations on three main factors and their influence on the buckling resistance of reinforcing bars and on their behaviour in the range of postcritical deformations. These three factors are the shape of initial deformation, the amplitude of geometric imperfection and the slenderness of bars. The analysis was made of bars fixed on both sides for three initial shapes of deformation between adjacent stirrups, four amplitudes of geometric imperfections and eight bar slendernesses. The results of the numerical analyses carried out showed that the factors analysed have a very high influence on the inelastic buckling of the bars. The initial deformation shape, the radius of curvature and the slenderness of the bars have a significant influence on the buckling resistance of these bars and their longitudinal and transverse deformations. The research demonstrates that bars which are bent or compressed initially have a smaller resistance to buckling compared to straight bars, as the amplitude of geometric imperfections increases and the slenderness of the members increases. However, for the deformation shape of the bars, which is accompanied by shear forces, the drop in the buckling resistance of the members is small, and resistance to buckling for items with a small slenderness was higher than that of straight bars.

Author(s):  
Mohammad Radwan ◽  
Balázs Kövesdi

Determining the plate or the local buckling resistance is highly important in designing steel buildings and bridges. The EN 1993-1-5Annex C provides a FEM-based design approach to calculate the buckling resistance based on numerical design calculations (geometrical and material nonlinear analysis - GMNIA). Within the GMNIA analysis-based stability design, the application of the imperfections has a special role. Thus, the applicability of the EN 1993-1-5 based buckling curve (Winter curve) has been questioned for pure compression, and previous investigations showed the buckling curve of EN 1993-1-5 Annex B is more appropriate for the design of slender box-section columns subjected to pure compression, the magnitude of the equivalent geometric imperfection to be applied in numerical models for local buckling is also questioned and investigated by the authors within the current paper. The aim of the current research program is to investigate the necessary equivalent geometric imperfections to be applied in FEM-based design calculations using GMNIA calculations. A numerical parametric study is executed to investigate the imperfection sensitivity of box-section columns having different local slenderness. The necessary imperfection magnitudes are determined to each analyzed geometry leading to the buckling resistance predicted by the standardized buckling curves. Based on the numerical parametric study, a proposal for the applicable equivalent geometric imperfection magnitude is developed, which conforms to the plate buckling curves of the EN 1993-1-5 and giving an improvement proposal to the local buckling imperfection magnitudes of the prEN 1993-1-14, which is currently under development.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Muntaseer Kainat ◽  
Meng Lin ◽  
J. J. Roger Cheng ◽  
Michael Martens ◽  
Samer Adeeb

The effects of the initial geometric imperfections on the buckling response of grade X-100 UOE manufactured pipes are studied through finite element analysis (FEA). The initial geometric imperfections had been previously measured and quantified in terms of deviations in outside radius (OR) and wall thickness. The measurement results are used to develop imperfection models to be incorporated into buckling analysis. The OR deviation is seen to have insignificant effects on the buckling behavior, while the effects of thickness deviation are seen to be profound for both unpressurized and pressurized pipes. The geometric imperfection models are further investigated through a sensitivity study to isolate the most influential imperfection aspects on the buckling resistance of UOE pipes. A parametric study is carried out using these models and shows that excluding geometric imperfections will always result in overprediction of buckling capacity irrespective of D/t ratios.


Author(s):  
Shorya Awtar ◽  
Edip Sevincer

Over-constraint is an important concern in mechanism design because it can lead to a loss in desired mobility. In distributed-compliance flexure mechanisms, this problem is alleviated due to the phenomenon of elastic averaging, thus enabling performance-enhancing geometric arrangements that are otherwise unrealizable. The principle of elastic averaging is illustrated in this paper by means of a multi-beam parallelogram flexure mechanism. In a lumped-compliance configuration, this mechanism is prone to over-constraint in the presence of nominal manufacturing and assembly errors. However, with an increasing degree of distributed-compliance, the mechanism is shown to become more tolerant to such geometric imperfections. The nonlinear load-stiffening and elasto-kinematic effects in the constituent beams have an important role to play in the over-constraint and elastic averaging characteristics of this mechanism. Therefore, a parametric model that incorporates these nonlinearities is utilized in predicting the influence of a representative geometric imperfection on the primary motion stiffness of the mechanism. The proposed model utilizes a beam generalization so that varying degrees of distributed compliance are captured using a single geometric parameter.


2013 ◽  
Vol 457-458 ◽  
pp. 684-687
Author(s):  
Yong Dong Cai ◽  
Shun Bin Ma

CRT- 83 carpet rapier loom is a kind of high-grade rigid rapier loom,the weft yarn will give looms to demand higher stability of the weft insertion. Theoretical analysis based on the theory research of the stability of clamping weft and weft handover shows that the rapier deformation,slipping force and the depth of clamping are main factors influencing the stability of weft insertion.In order to obtain reasonable process of weft insertion,concerned with the following factors:the grip length and outrigger length of rapier,release times of clip yarn device,initial deformation angle of spring piece.


Defocused spherical mirror Fabry—Pérot etalons, in which the mirror separation is slightly less than the common radius of curvature, produce a multiple-beam fringe pattern of concentric rings, with quasi-linear spectral dispersion over an appreciable annular region corresponding to two free spectral ranges. The characteristics of these interferograms are discussed in relation to their many advantages for pulsed laser spectroscopy. These advantages include: (i) accuracy of frequency difference measurement; (ii) high illumination of the detector with moderate energy density in the laser beam; (iii) ease of alinement and permanent adjustment of the mirrors leading to the attainment in practice of a very high instrumental finesse (N R values of up to 90 have been achieved); (iv) measurement of degree of spatial coherence of laser beam; (v) ease of matching the interferogram to the spatial resolution of the detector. A simple optical path relation determines the positions of the fringes and the location of the quasilinear dispersion region. The interfering wavefronts, formed by multiple reflexion, have been numerically computed and summed to provide information on the finesse, fringe profiles, contrast and optimum conditions of use of this new, very high resolving power (107 to 108) quasi-linear spectrographic disperser. Constructional details are described and optical design criteria are discussed, together with the various experimental arrangements for employing the instrument. Comparison is made with the equivalent confocal and plane Fabry—Pérot etalons and methods of simultaneously measuring


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bin Huang ◽  
Zhou Che Hong

Finite element models (FE models) of high-strength steel Q420 (yield strength 420 MPa) circular tubes considering residual stresses and local and overall geometric imperfections were established and verified against existing test data. Based on parameter analysis, it was derived that the reduction of ultimate capacity resulting from residual stresses was up to 11.8%. When slenderness ratio was larger than 25, the effect of overall geometric imperfection played a major role compared with that of local geometric imperfection, which resulted in the reduction of the ultimate capacity of about 11.5%. Through tracking the failure process, it was found that, in the initial stage of loading, the deformation of columns mainly presents overall bending. When the load increased near the ultimate load, local buckling occurred and the bearing capacity decreased rapidly. The D/t limit value 27 was determined for preventing the local buckling, and the overall slenderness λl limit value 40 was proposed to distinguish whether local buckling occurs. Based on the FEM result and test data, the applicability of ASCE48-05 and AS4100 for local buckling resistance was evaluated. Continuing the result of stub columns, curve a in GB50017-2017 and in Eurocode 3 of the overall buckling factor φ was proposed to be used in EWM and DSM for estimating the interactive buckling resistance of circular tubes of Q420 under axial compression.


2019 ◽  
Vol 293 ◽  
pp. 01003
Author(s):  
J F Jia ◽  
A D Lai ◽  
D L Rong ◽  
Z H Zhou ◽  
X S Xu

For finding out the relationship between vibrational modes and geometric imperfections, the dynamic behavior of cylindrical shells with a local imperfection is analyzed by using numerical simulation of finite element method in this paper. The results show that there are some differences in vibrational modes between cylindrical shells with and without imperfections. They appear that main corrugation of the mode of the higher orders for the shell with a local imperfection can be fastened on the region of the imperfection but the low order ones. The results also show that the vibrational modes of shells depend upon the size, shape and location of the imperfections. The local vibrational modes are discovered and are more obvious for the imperfection of the larger size. These results are helpful to the design of engineering structures.


Author(s):  
G D Galletly ◽  
J Blachut

Welded hemispherical or spherical shells in practice have initial geometric imperfections in them that are random in nature. These imperfections determine the buckling resistance of a shell to external pressure but their magnitudes will not be known until after the shell has been built. If suitable simplified, but realistic, imperfection shapes can be found, then a reasonably accurate theoretical prediction of a spherical shell's buckling/collapse pressure should be possible at the design stage. The main aim of the present paper is to show that the test results obtained at the David Taylor Model Basin (DTMB) on 28 welded hemispherical shells (having diameters of 0.75 and 1.68 m) can be predicted quite well using such simplified shape imperfections. This was done in two ways. In the first, equations for determining the theoretical collapse pressures of externally pressurized imperfect spherical shells were utilized. The only imperfection parameter used in these equations is δ0, the amplitude of the inward radial deviation of the pole of the shell. Two values for δ0 were studied but the best overall agreement between test and theory was found using δ0 = 0.05 ✓ (Rt). This produced ratios of experimental to numerical collapse pressures in the range 0.98–1.30 (in most cases the test result was the higher). The second approach also used simplified imperfection shapes, but in conjunction with the shell buckling program BOSOR 5. The arc length of the imperfection was taken as simp = k ✓ (Rt) (with k = 3.0 or 3.5) and its amplitude as δ0 = 0.05√(Rt). Using this procedure on the 28 DTMB shells gave satisfactory agreement between the experimental and the computer predictions (in the range 0.92–1.20). These results are very encouraging. The foregoing method is, however, only a first step in the computerized buckling design of welded spherical shells and it needs to be checked against spherical shells having other values of R/t. In addition, more experimental information on the initial geometric imperfections in welded spherical shells (and how they vary with R/t) is desirable. A comparison is also given in the paper of the collapse pressures of spherical shells, as obtained from codes, with those predicted by computer analyses when the maximum shape deviations allowed by the codes are employed in the computer programs. The computed collapse pressures are frequently higher than the values given by the buckling strength curves in the codes. On the other hand, some amplitudes of imperfections studied in the paper give acceptable results. It would be helpful to designers if agreement could be reached on an imperfection shape (amplitude and arc length) that was generally acceptable. Residual stresses are not considered in this paper. They might be expected to decrease a spherical shell's buckling resistance to external pressure. However, experimentally, this does not always happen.


Author(s):  
G D Galletly

When perfect, externally pressurized complete circular toroidal shells buckle, the minimum buckling pressure pcr usually occurs in the axisymmetric n = 0 mode, with pcr for n = 2 being only slightly larger. In the present paper, the effects of axisymmetric initial geometric imperfections on reducing pcr for the perfect shell are investigated. Various types of imperfection are studied, i.e. localized flat spots, smooth dimples, sinusoids and buckling mode shapes. The principal geometry investigated was R/b = 10, b/t = 100, although other geometries were also considered. The maximum decrease in buckling resistance, Δ pcr, was found to be about 16 per cent at δ 0/t = 1 and it occurred with smooth dimples at the north (φ = 180°) and south (φ=0°) poles. This value of Δ pcr is not large. Circular toroidal shells thus do not appear to be very sensitive to axisymmetric initial geometric imperfections. The reductions in the buckling pressure of the above shell, arising because of initial imperfections having the shape of the n = 0 and the n = 2 buckling modes, were 12 and 9 per cent respectively for wo/t = 1. These decreases in the buckling resistance are smaller than that for the ‘two smooth dimple’ case mentioned above.


1983 ◽  
Vol 50 (4a) ◽  
pp. 750-756 ◽  
Author(s):  
David Hui ◽  
A. W. Leissa

This paper deals with the effects of geometric imperfections on the vibration frequencies of simply supported flat plates under in-plane uniaxial or biaxial compression. The analysis is based on a solution of the nonlinear von Ka´rma´n equations for finite deflections, incorporating the influence of an initial geometric imperfection. It is found that significant increase in the vibration frequencies may occur for imperfection amplitude of the order of a fraction of the plate thickness, even in the absence of in-plane forces.


Sign in / Sign up

Export Citation Format

Share Document