scholarly journals Preparation of Continuous Alumina Fiber with Nano Grains by the Addition of Iron Sol

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5442
Author(s):  
Luqun Liu ◽  
Juan Wang ◽  
Yunzhu Ma ◽  
Wensheng Liu ◽  
Shuwei Yao

Continuous alumina fiber exhibits excellent mechanical properties owing to its dense microstructure with fine grains. In this study, alumina fiber was prepared by the sol–gel method using iron sol as a nucleating agent. It was proposed that the α-Al2O3 grain size be adjusted based on the modification of colloidal particle size. The effect of holding temperature and reaction material ratio on the iron colloidal particle size was studied. The microstructure of alumina fiber was characterized by scanning electron microscopy (SEM). The experiment results indicated that iron colloidal particle size increases with the holding temperature and the NH4HCO3/Fe(NO3)3·9H2O ratio. The alumina fiber with uniform nano α-Al2O3 grains was obtained by calcination at 1400 °C for 5 min. The mean grain size tends to rise with the mean colloidal particle size. Using the iron sol as a nucleating agent, the fiber with a mean grain size of 22.5 nm could be formed. The tensile strength of fibers increased with the decrease of grain size.

1970 ◽  
Vol 14 ◽  
pp. 35-42 ◽  
Author(s):  
Danda Pani Adhikari

A 17.63 m long bore-hole core extracted from the deepest part of Lake Yamanaka, one of the Fuji-five Lakes at the northeasternfoot of Mount Fuji, central Japan, composed of sediment with intercalations of scoria fallout deposits. The sediment of the upper11.4 m was investigated for grain-size distribution by using a laser diffraction particle size analyser. The mean grain-size profileshowed various degrees of fluctuations, both short-and long-terms, and the size-frequency distribution revealed unimodal-trimodalmixing of sediments. Changes in lake size and water depth appear to be the main factors affecting the variability in the grain-sizedistribution and properties. The lake level appears low during 7000–5000 cal BP and 2800–1150 cal BP and relatively high during5000–2800 cal BP and 1150 cal BP– present.DOI: http://dx.doi.org/10.3126/bdg.v14i0.5437Bulletin of the Department of Geology Vol.14 2011, pp.35-42 


2014 ◽  
Vol 1058 ◽  
pp. 44-47
Author(s):  
Bo Feng Ma ◽  
Bin Tan ◽  
Wen Bo Zhao ◽  
Xin Liang ◽  
Fa Mei Hu ◽  
...  

To save land resources by the use of low-grade natural resources to realize a high cost performance product, the technology of prepared superfine quartz sand powder via the ball milling methods were investigated. The results are shown the mean particle size of quartz sand powder is gradually become small varied with prolonging the ball milling time. Before 60 minutes, the mean particle size is slashed, however, the range of varying mean particle size is less after 60 minutes under the ball milling rotate speed for 200r/min and the charge amount for 200g/L, so the ball milling time for 60 minutes is decided.The mean grain size of quartz powders are decreased vary with an increasing the ball milling rotate speed, and the rotate speed is lower, the distribution is wider, however, the rotate speed is higher, the distribution is narrower.The mean grain size of quartz powders are 11.25μm via a roller ball milling, the mean grain size of quartz powders are 7.37μm via a planetary ball milling, and the particle size distribution of quartz powders milled via a roller ball milling is wider than that of quartz powders milled via a planetary ball milling, which shows the of quartz powders milled via a roller ball milling is not more uniform than that of quartz powders milled via a planetary ball milling, the asymmetry powder is advantage for forming the high performance building materials body.


2011 ◽  
Vol 495 ◽  
pp. 327-330
Author(s):  
Xiang Wei Kong ◽  
Hong Wei Qin ◽  
Ling Zhang ◽  
Li Hui Sun ◽  
Ji Fan Hu

The nanocrystalline powders Nd1-xCaxFeO3 prepared by sol-gel method crystallized as perovskite orthorhombic structure. The mean grain size of Nd1-xCaxFeO3 powders were about 15~ 40 nm. The conductivity of the Ca doped samples was enhanced, compared to that of the undoped. The Nd0.9Ca0.1FeO3-based sensor showed good gas sensing properties to ethanol and acetone. The responses of the Nd0.9Ca0.1FeO3-based sensor to 600ppm ethanol and acetone were about 158.4 at 220°C and 61.7 at 240°C, respectively.


2021 ◽  
Vol 56 (19) ◽  
pp. 11237-11247 ◽  
Author(s):  
Johannes Pötschke ◽  
Manisha Dahal ◽  
Mathias Herrmann ◽  
Anne Vornberger ◽  
Björn Matthey ◽  
...  

AbstractDense (Hf, Ta, Nb, Ti, V)C- and (Ta, Nb, Ti, V, W)C-based high-entropy carbides (HEC) were produced by three different sintering techniques: gas pressure sintering/sinter–HIP at 1900 °C and 100 bar Ar, vacuum sintering at 2250 °C and 0.001 bar as well as SPS/FAST at 2000 °C and 60 MPa pressure. The relative density varied from 97.9 to 100%, with SPS producing 100% dense samples with both compositions. Grain size measurements showed that the substitution of Hf with W leads to an increase in the mean grain size of 5–10 times the size of the (Hf, Ta, Nb, Ti, V,)C samples. Vacuum-sintered samples showed uniform grain size distribution regardless of composition. EDS mapping revealed the formation of a solid solution with no intermetallic phases or element clustering. X-ray diffraction analysis showed the structure of mostly single-phase cubic high-entropy carbides. Hardness measurements revealed that (Hf, Ta, Nb, Ti, V)C samples possess higher hardness values than (Ta, Nb, Ti, V, W)C samples.


2004 ◽  
Vol 843 ◽  
Author(s):  
Adolfo Franco Júnior ◽  
Steve G. Roberts

ABSTRACTArrays of closely spaced quasi-static indentation were made on specimens of polycrystalline α-Al2O3, mean grain size G=1.2, 3.8 and 14.1 μm. The critical indentation spacing to produce crack coalescence between indentations, and thus significant loss of material from the surface, was determined. These data are compared to results for low-impact-velocity wet erosive wear on the same materials; a good correspondence is found. The indentation data can be used to produce “wear maps”, which provide a guideline for predicting the low-impact-velocity erosive wear resistance of brittle materials.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Aidong Xia ◽  
Jie Yin ◽  
Xiao Chen ◽  
Zhengren Huang ◽  
Xuejian Liu ◽  
...  

In this work, a (SiC-AlN)/ZrB2 composite with outstanding mechanical properties was prepared by using polymer-derived ceramics (PDCs) and hot-pressing technique. Flexural strength reached up to 460 ± 41 MPa, while AlN and ZrB2 contents were 10 wt%, and 15 wt%, respectively, under a hot-pressing temperature of 2000 °C. XRD pattern-evidenced SiC generated by pyrolysis of polycarbosilane (PCS) was mainly composed by 2H-SiC and 4H-SiC, both belonging to α-SiC. Micron-level ZrB2 secondary phase was observed inside the (SiC-AlN)/ZrB2 composite, while the mean grain size (MGS) of SiC-AlN matrix was approximately 97 nm. This unique nano-micron hybrid microstructure enhanced the mechanical properties. The present investigation provided a feasible tactic for strengthening ceramics from PDCs raw materials.


2013 ◽  
Vol 634-638 ◽  
pp. 1807-1810
Author(s):  
Guang Xu ◽  
Jing Yang ◽  
Tao Xiong ◽  
Peng Deng ◽  
Long Fei Cao

Sub-nano structured steel was obtained by cold rolling and annealing martensite microstructure for a plain carbon steel. The mean grain size is several hundreds nanometer. The steel has very high strength and also good total elongation.


Sign in / Sign up

Export Citation Format

Share Document