scholarly journals Sustainable Production of Arecanut Husk Ash as Potential Silica Replacement for Synthesis of Silicate-Based Glass-Ceramics Materials

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1141
Author(s):  
Muhammad Fahmi Anuar ◽  
Yap Wing Fen ◽  
Muhammad Zakwan Azizan ◽  
Fida’i Rahmat ◽  
Mohd Hafiz Mohd Zaid ◽  
...  

Arecanut husk (AH) was selected as a material for silica replacement in the synthesis process of glass-ceramics zinc silicate and also the fact that it has no traditional use and often being dumped and results in environmental issues. The process of pyrolysis was carried out at temperature 700 °C and above based on thermogravimetric analysis to produce arecanut husk ash (AHA). The average purity of the silica content in AHA ranged from 29.17% to 45.43%. Furthermore, zinc oxide was introduced to AHA and zinc silicate started to form at sintering temperature 700 °C and showed increased diffraction intensity upon higher sintering temperature of 600 °C to 1000 °C based on X-ray diffraction (XRD) analysis. The grain sizes of the zinc silicate increased from 1011 nm to 3518 nm based on the morphological studies carried out by field emission scanning electron microscopy (FESEM). In addition, the optical band gap of the sample was measured to be in the range from 2.410 eV to 2.697 eV after sintering temperature. From the data, it is believed that a cleaner production of low-cost zinc silicate can be achieved by using arecanut husk and have the potential to be used as phosphors materials.

2015 ◽  
Vol 659 ◽  
pp. 185-189
Author(s):  
Aparporn Sakulkalavek ◽  
Rungnapa Thonglamul ◽  
Rachsak Sakdanuphab

In this study, we investigated a CuAl0.9Fe0.1O2 compound prepared at two different sintering temperatures in order to find out the effect of sintering temperature on the compound's figure of merit of thermoelectric properties. The thermoelectric CuAl0.9Fe0.1O2 compound was prepared from high purity grade Cu2O, Al2O3 and Fe2O3 powders. The mixture of these powders were ground and then pressed with uniaxial pressure into pellets. The pellets obtained were sintered in the air at 1423 K and 1473 K. X-ray diffraction (XRD) patterns showed a single phase of CuAl0.9Fe0.1O2 with rhombohedral structure, , along with a trace of CuO second phase. Moreover, the XRD peaks of the sample sintered at 1423 K indicated that more Fe3+ atoms replaced Al3+ atoms in this sample than they did in the sample sintered at 1473 K. The average grain size of the CuAl0.9Fe0.1O2 compound prepared increased with increasing sintering temperature, whereas its mean pore size and porosity decreased with increasing sintering temperature. The dispersed small pores markedly decreased the thermal conductivity of the compound, while the Fe3+ substitution of Al3+ increased its electrical conductivity. The highest figure of merit (ZT) found was 0.021 at 973 K in the CuAl0.9Fe0.1O2 sample sintered at 1423 K. Our findings show that this low-cost material with a reasonable figure of merit is a good candidate for thermoelectric applications at high-temperature.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2019 ◽  
Vol 22 (6) ◽  
pp. 220-226 ◽  
Author(s):  
Emil Zacky Effendi ◽  
Yudhi Christian Hariady ◽  
Muhammad Daffa Salaahuddin ◽  
Chairul Irawan ◽  
Iryanti Fatyasari Nata

Rice husk (RH) is an agricultural waste that contains cellulose. Rice husk fiber (RHF) can be used as a source of fiber in the manufacture of magnetic nanoparticle biocomposite. The purpose of this study is to synthesize and characterize magnetic nanoparticle biocomposite used as an adsorbent and evaluate its performance on the adsorption of  Mn2+ ions and Total Suspended Solid (TSS) in peat water. Rice husk fiber was delignified to eliminate lignin levels. Furthermore, the biocomposite was made through the solvothermal method with and without the addition of hexanediamine. The products produced are two types of adsorbents, namely magnetic nanoparticle biocomposite with an amino group (RHB-MH) and rice husk fiber biocomposite without an amino group (RHB-M). These biocomposites were used to adsorb Mn2+ ions in peat water. Evaluations were carried out at pH 5, 6, 7, and 8 with an optimum adsorption time of 60 minutes. The solutions at the time of adsorption were evaluated to determine the optimum conditions of the adsorption process carried out. The observation of magnetic nanoparticle biocomposite based on the analysis of Scanning Electron Microscopy (SEM) shows magnetic nanoparticles formed on the surface of rice husk fiber with a diameter of 30-50 nm. X-Ray Diffraction (XRD) analysis showed that the delignification of rice husk increased Crystallinity Index (CrI) by 64.98% and reduced silica content by 78%. Fourier Transform Infra-Red (FT-IR) spectrometer show absorption peak at 570 cm-1 for Fe-O bonds and Fe3O4 peak around 1627 cm−1, indicating the presence of N-H bending. The optimum condition for Mn2+ adsorption was achieved at pH 5 and 60-minutes duration with an adsorption capacity of 54.7 mg/g and 190.78 mg/g for RHB-M and RHB-MH. The TSS reduction achieved the effectiveness of 60.2% and 90.3% for BSP-M and BSP-MH, respectively.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5413
Author(s):  
Rabiatul Adawiyah Abdul Wahab ◽  
Mohd Hafiz Mohd Zaid ◽  
Sidek Hj. Ab Aziz ◽  
Khamirul Amin Matori ◽  
Yap Wing Fen ◽  
...  

In this study, the authors attempted to propose the very first study on fabrication and characterization of zinc-boro-silicate (ZBS) glass-ceramics derived from the ternary zinc-boro-silicate (ZnO)0.65(B2O3)0.15(RHA)0.2 glass system through a conventional melt-quenching method by incorporating rice husk ash (RHA) as the silica (SiO2) source, followed by a sintering process. Optimization of sintering condition has densified the sintered samples while embedded beta willemite (β-Zn2SiO4) and alpha willemite (α-Zn2SiO4) were proven in X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) has shown the distribution of willemite crystals in rhombohedral shape crystals and successfully form closely-packed grains due to intense crystallization. The photoluminescence (PL) spectra of all sintered ZBS glasses presented various emission peaks at 425, 463, 487, 531, and 643 nm corresponded to violet, blue, green, and red emission, respectively. The correlation between the densification, phase transformation, microstructure, and photoluminescence of Zn2SiO4 glass-ceramic phosphor is discussed in detail.


2007 ◽  
Vol 280-283 ◽  
pp. 947-952 ◽  
Author(s):  
Govind P. Kothiyal ◽  
B.I. Sharma ◽  
V.K. Shrikhande ◽  
Madhumita Goswami ◽  
J.V. Yakhmi

Lithium zinc silicate (LZS) glass-ceramics with compositions: (a) Li2O-ZnO-SiO2-Na2OB2O3- P2O5 and (b) Li2O-ZnO-SiO2-K2O-Al2O3-B2O3-P2O5 have been prepared by controlled nucleation and crystallization. The effect of ZnO/(ZnO+SiO2) ratio on various thermo-physical properties was investigated by changing the ratio from 0.1 to 0.31 in the case of (a). Different crystalline phases have been identified by X-ray diffraction studies in glass-ceramics including cristobalite, Li3Zn0.5SiO4 and Li2SiO3. Density ( r) was found to increase from 2.62 to 2.82 gm cm-3 while microhardness (VHN) decreased from 6.56 to 5.79 GPa with increase in ZnO/(ZnO+SiO2) ratio in the glass-ceramics. Average thermal expansion coefficient (TEC) in the temperature range 30 to 450oC increased from 125x10-7 to 185x10-7 /oC. The increase in TEC and decrease in microhardness are thought to be due to the formation of different phases, which in turn influence the rigidity/bonding in the glass-ceramics. A remarkable difference in the microstructure close to interface of the glass-ceramics to Cu seal was seen in both the cases [high ZnO content (a) of ZnO/(ZnO+SiO2) ratio 0.31 and low ZnO content (b) of ZnO/(ZnO+SiO2) ratio 0.024]. Both the microstructures showed globally two contrast phases of bright and dark dispersed in the glass matrix. An interesting dandritic phase observed towards core in the microstructure for the high zinc content is not seen in the microstructure for low zinc content glass-ceramic. The seal withstands a vacuum of ~ 10-6 torr at helium leak rate of 3x10-10 torr litre/sec.


2014 ◽  
Vol 1035 ◽  
pp. 263-267
Author(s):  
Xiu Quan Zhao ◽  
Zheng Cao ◽  
Yu Teng Wu ◽  
Hong Jiang ◽  
Chang Jiu Li ◽  
...  

Glass-ceramic materials of the Li2O-ZnO-SiO2 system, with various amounts of TiO2 added, have been prepared. The appropriate heat treatment temperatures were selected according to the information provided by the differential thermal analysis (DTA). X-ray diffraction (XRD) analysis demonstrated that in the LZS glass-ceramics system, the main phases are Li2ZnSiO4, cristobalite, tridymite and quartz. The scanning electron microscopy (SEM) revealed that crystals appear as lamellar and spherical particles in the glass-ceramics samples. In addition, the average coefficient of the thermal expansion (CTE) values first decreased, then increased and finally tended to flatten. When the content of TiO2 increased to 6%, the CTE value decreased to 9.15×10-6/K, reached the lowest value. When the content of TiO2 increased to 10%, the CTE value reached highest value 13.90×10-6/K.


Optik ◽  
2016 ◽  
Vol 127 (8) ◽  
pp. 3727-3729 ◽  
Author(s):  
Nur Alia Sheh Omar ◽  
Yap Wing Fen ◽  
Khamirul Amin Matori

2014 ◽  
Vol 605 ◽  
pp. 31-34
Author(s):  
Girolamo Costanza ◽  
R. Donnini ◽  
Saulius Kaciulis ◽  
Giorgio Maddaluno ◽  
Roberto Montanari

W is a promising material to use as protection for thermal shields in future nuclear fusion reactors, however the joining to other metals is really challenging. For realizing such joints plasma spraying (PS) has been used for its simplicity, the possibility to cover complex and extended surfaces and the relatively low cost. An appropriate interlayer must be optimized to increase the adhesion of W on the substrates and to provide a soft interface for better thermo-mechanical compatibility.The present work demonstrates that high-temperature X-ray diffraction (HT-XRD) permits to quickly assess the reliability and quality of the coating-interlayer-substrate system by measuring the strain of coating. This is very useful to orientate the work for optimizing the structure and composition of the interlayer and the parameters of deposition process.


Author(s):  
Tatsiana A. Salamakha ◽  
Ekaterina E. Trusova ◽  
Yauhen U. Tratsiak

In this paper an original method for obtaining glass-ceramics based on barium iodide powder activated with Eu2+ is proposed, their structural and spectral-luminescent properties are investigated. X-ray diffraction analysis has evidenced that glass-ceramics containing BaI2 ∙ 2H2O and BaI2 are formed when 50 mas. % of the starting iodide powder is used in the synthesis process. The possibility of using glass-ceramics for preventing the contact of iodide powder with water vapor has been confirmed.


2021 ◽  
Vol 33 (6) ◽  
pp. 1304-1308
Author(s):  
Debasish Mondal ◽  
Dipankar Mahata ◽  
Kamala Mandy Hansda ◽  
Sourav Mondal ◽  
Ajit Das

Recently non-harmful nanomaterials have acquired critical significant attention in wastewater treatment containing organic pollutants especially toxic and hazardous dyes. In this regard, a low cost and eco friendly method has been investigated for the green synthesis of alumina nanoparticles (Al2O3 NPs). The alumina nanoparticles were synthesized using an aqueous extract of Psidium guajava leaf as a potential stabilizing agent. The UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) techniques were used to characterize the synthesized nanoparticles. The absorption at 281 nm confirmed the formation of alumina nanoparticles. The FTIR spectra and XRD analysis confirmed the presence of various functional groups and crystalline structures of Al2O3 NPs during the synthesis. The spectrum clearly indicates the organic moieties in Psidium guajava extract are responsible for the biosynthesis of Al2O3 NPs. The suface morphology of Al2O3 NPs was confirmed by SEM and EDS studies. Besides this, the removal of methylene blue through adsorption and kinetic study was also reported.


Sign in / Sign up

Export Citation Format

Share Document