scholarly journals Milling Performance of CFRP Composite and Atomised Vegetable Oil as a Function of Fiber Orientation

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2062
Author(s):  
Tarek-Shaban-Mohamed Elgnemi ◽  
Martin Byung-Guk Jun ◽  
Victor Songmene ◽  
Agnes Marie Samuel

Carbon fiber reinforced polymers (CFRPs) have found diverse applications in the automotive, space engineering, sporting goods, medical and military sectors. CFRP parts require limited machining such as detouring, milling and drilling to produce the shapes used, or for assembly purposes. Problems encountered while machining CFRP include poor tool performance, dust emission, poor part edge quality and delamination. The use of oil-based metalworking fluid could help improve the machining performance for this composite, but the resulting humidity would deteriorate the structural integrity of the parts. In this work the performance of an oil-in-water emulsion, obtained using ultrasonic atomization but no surfactant, is examined during the milling of CFRP in terms of fiber orientation and milling feed rate. The performance of wet milling is compared with that of a dry milling process. The tool displacement-fiber orientation angles (TFOA) tested are 0°, 30°, 45°, 60°, and 90°. The output responses analyzed were cutting force, delamination, and tool wear. Using atomized vegetable oil helps in significantly reducing the cutting force, tool wear, and fiber delamination as compared to the dry milling condition. The machining performance was also strongly influenced by fiber orientation. The interactions between the fiber orientation, the machining parameters and the tested vegetable oil-based fluid could help in selecting appropriate cutting parameters and thus improve the machined part quality and productivity.

Author(s):  
Kshitij Pandey ◽  
Saurav Datta

The present work investigates application feasibility of PVD TiN/TiCN/TiN coated cermet and CVD Al2O3/TiCN coated SiAlON for dry machining of Inconel 825 superalloy. Machining performance is interpreted through cutting force magnitude, tool-tip temperature, and mechanisms of tool wear. Results are compared to that of CVD multi-layer TiN/TiCN/Al2O3/TiN coated WC-Co tool. It is evidenced that SiAlON tool generates lower cutting force but experiences higher tool-tip temperature than other two counterparts. Apart from abrasion and adhesion, carbide tool witnesses coating peeling and ploughing. In contrast, SiAlON tool suffers from inexorable chipping and notching. Wear pattern of cermet tool seems less severe than carbide and SiAlON. Chip's underside surface morphology appears relatively better in case of cermet tool.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 623 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli

Carbon fiber-reinforced polymers (CFRPs) have very good mechanical properties, such as extremely high tensile strength/weight ratios, tensile modulus/weight ratios, and high strengths. CFRP composites need to be machined with a suitable cutting tool; otherwise, the machining quality may be reduced, and failures often occur. However, as a result of the high hardness and low thermal conductivity of CFRPs, the cutting tools used in the milling process of these materials complete their lifetime in a short cycle, due to especially abrasive wear and related failure mechanisms. As a result of tool wear, some problems, such as delamination, fiber breakage, uncut fiber and thermal damage, emerge in CFRP composite under working conditions. As one of the main failure mechanisms emerging in the milling of CFRPs, delamination is primarily affected by the cutting tool material and geometry, machining parameters, and the dynamic loads arising during the machining process. Dynamic loads can lead to the breakage and/or wear of cutting tools in the milling of difficult-to-machine CFRPs. The present research was carried out to understand the influence of different machining parameters on tool abrasion, and the work piece damage mechanisms during CFRP milling are experimentally investigated. For this purpose, cutting tests were carried out using a (Physical Vapor Deposition) PVD-coated single layer TiAlN and TiN carbide tool, and the abrasion behavior of the coated tool was investigated under dry machining. To understand the wear process, scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was used. As a result of the experiments, it was determined that the hard and abrasive structure of the carbon fibers caused flank wear on TiAlN- and TiN-coated cutting tools. The best machining parameters in terms of the delamination damage of the CFRP composite were obtained at high cutting speeds and low feed rates. It was found that the higher wear values were observed at the TiAlN-coated tool, at the feed rate of 0.05 mm/tooth.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


Author(s):  
Pradeep George ◽  
K. Leo Dev Wins ◽  
D.S. Ebenezer Jacob Dhas ◽  
Pramod George ◽  
B. Anuja Beatrice

Author(s):  
Farzad Pashmforoush ◽  

Quartz is one of the difficult-to-machine materials due to its low fracture toughness and high hardness. In this study, the machinability of this material during single point diamond turning (SPDT) was numerically investigated using finite element method (FEM). First of all, the accuracy of the FE model was verified based on the experimental data available in literature. Then, the machinability of quartz was analysed in terms of cutting force, tool/workpiece temperature and tool wear rate. Also, the influence of tool vibration on cutting force and tool wear rate was investigated. Furthermore, an empirical/mathematical model was developed to express the machining outputs as a function of the micro-machining parameters. The obtained results indicate the good performance of FEM in analysing the machinability of quartz during SPDT process.


Author(s):  
A Ghasempoor ◽  
T N Moore ◽  
J Jeswiet

In this paper, a neural network based system for ‘on-line’ estimation of tool wear in turning operations is introduced. The system monitors the cutting force components and extracts the tool wear information from the changes occurring over the cutting process. A hierarchical structure using multilayered feedforward static and dynamic neural networks is used as a specialized subsystem, for each wear component to be monitored. These subsystems share information about the tool wear components they are monitoring and their error in estimating the cutting force components is used to update the dynamic neural networks. The adaptability property of neural networks ensures that changes in machining parameters can be accommodated. Simulation studies are undertaken using experimental data available from manufacturing literature. The results are promising and show good estimation ability.


2016 ◽  
Vol 861 ◽  
pp. 26-31 ◽  
Author(s):  
Peng Guo ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Jun Wang ◽  
Han Lian Liu ◽  
...  

The milling of AISI 321 stainless steel which has wide engineering applications particularly in automobile, aerospace and medicine is of great importance especially in the conditions where high surface quality is required. In this paper, L16 orthogonal array design of experiments was adopted to evaluate the machinability of AISI 321 stainless steel with coated cemented carbide tools under finish dry milling conditions, and the influence of cutting speed ( V ), feed rate ( f ) and depth of cut ( ap ) on cutting force, surface roughness and tool wear was analysed. The experimental results revealed that the cutting force decreased with an increase in the cutting speed and increased with an increase in the feed rate or the depth of cut. The tool wear was affected significantly by the cutting speed and the depth of cut, while the effect of the feed rate on the tool wear was insignificant. With the cutting speed increased up to 160 m/min, a decreasing tendency in the surface roughness was observed, but when the cutting speed was further increased, the surface roughness increased. The effect of the feed rate and the depth of cut on the surface roughness was slight.


2011 ◽  
Vol 189-193 ◽  
pp. 3142-3147 ◽  
Author(s):  
Dong Qiang Gao ◽  
Zhong Yan Li ◽  
Zhi Yun Mao

A model of stress and temperature field is established on nickel-based alloy cutting by finite element modeling and dynamic numerical simulating, and then combining high-speed machining test and orthogonality analysis method, the influence law of cutting parameters on the cutting force and tool wear has been researched, and the tool life and cutting force prediction model based on cutting parameters has been obtained. Finally, by genetic algorithm method cutting parameters are selected reasonably and optimized. The result shows that the bonding wear is main tool wear, and the influence of cutting speed on cutting force is smaller than feed per tooth and axial depth of cut.


2021 ◽  
Author(s):  
He Sui ◽  
Lifeng Zhang ◽  
Shuang Wang ◽  
Zhaojun Gu

Abstract Axial ultrasonic vibration-assisted cutting (AUVC) has proved to have better machining performance compared with conventional cutting methods; however, the effect of numerous and complex influencing factors on machining performance has not been clearly revealed and a recommended combination of cutting conditions has not been proposed yet, especially for difficult-to-machine material such as Ti6Al4V alloy. This paper focuses on experimental and theoretical investigation into machining performance when cutting Ti6Al4V with the AUVC method. First, a retrospective of the separation characteristics of AUVC is provided and the variable parameter cutting characteristics are demonstrated. We classify the influencing factors on machining performance into four categories: machining parameters, vibration parameters, tool choice, and cooling conditions. The relationship between these factors in terms of their effect on machining performance is established theoretically. Then, it describes experiments to determine the influence of these factors on cutting force, tool life, and surface roughness. For absolute influence, the orders for cutting force, tool life, and surface roughness are respectively cutting depth > amplitude > feed rate > rotation speed, rotation speed > feed rate > amplitude > cutting depth, and feed rate > amplitude > cutting depth > rotation speed. However, for relative influence, the order is unified as: amplitude > feed rate > rotation speed > cutting depth. Finally, it suggests a smaller feed rate, larger amplitude, moderate rotation speed, and smaller cutting depth in addition to a WC tool coated with TiAlN and used under HPC cooling condition for optimal performance of AUVC. This recommendation is based on the theoretical analysis and experimental results of cutting force, surface roughness, and tool life.


2021 ◽  
Vol 1027 ◽  
pp. 117-122
Author(s):  
Guan Hui Ren ◽  
Cong Zhou ◽  
Bi Zhang

This study focuses on the effect of cutting fluid on sample surface integrity and tool wear in milling additively manufactured Inconel 738LC. Sample surface integrity and tool wear characterization was undertaken using scanning electron microscopy, backscatter electron microscopy, energy dispersive spectroscopy, laser scanning confocal microscopy, ultra-depth of field digital microscope system and digital display hardness tester. Compared with dry milling, wet milling not only provides an entirely different result on surface morphology, but also shows less surface plastic deformation, and smaller surface roughness. In addition, the tool wear mechanisms of wet milling are found to be different compared to dry milling.


Sign in / Sign up

Export Citation Format

Share Document