scholarly journals Printed Flexible Thermoelectric Nanocomposites Based on Carbon Nanotubes and Polyaniline

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4122
Author(s):  
Marcin Słoma ◽  
Maciej Andrzej Głód ◽  
Bartłomiej Wałpuski

A new era of composite organic materials, nanomaterials, and printed electronics is emerging to the applications of thermoelectric generators (TEGs). Special attention is focused on carbon nanomaterials and conducting polymers, and the possibility to form pastes and inks for various low-cost deposition techniques. In this work, we present a novel approach to the processing of composite materials for screen-printing based on carbon nanotubes (CNTs) and polyaniline (PANI), supported with a dielectric polymer vehicle. Three different types of such tailor-made materials were prepared, with a functional phase consisted of carbon nanotubes and polyaniline composites fabricated with two methods: dry mixing of PANI CNT powders and in situ polymerisation of PANI with CNT. These materials were printed on flexible polymer substrates, exhibiting outstanding mechanical properties. The best parameters obtained for elaborated materials were σ=405.45 S·m−1, S=15.4 μV·K−1, and PF=85.2 nW·m−1K−2, respectively.

Author(s):  
Elias Brassitos ◽  
Qingchao Kong ◽  
Constantinos Mavroidis ◽  
Brian Weinberg

As modern robotic systems begin to permeate mass productions in consumer and healthcare products, the development of powerful cost-effective compact actuators represents a critical need to deliver commercially viable high performance robotic products. During the last years our team has developed a novel approach in actuator development which overcomes gearing packaging, efficiency and reliability problems of current actuators, paving the way for a new era of low-cost high-performance robotic products that are currently unattainable with existing commercial actuators. Our new actuator assembly, called the Gear Bearing Drive (GBD), uses three components comprising a brushless outrunner motor, two stage planetary gearbox, and novel rolling surfaces — all designed with overlapping functions and common features which interface together to drastically simplify and reduce the size and complexity of the actuator assembly. This unique approach allows embedding the motor within the planetary gearbox and further enables the actuator to operate without any traditional ball bearing, saving significant volume, cost, and manufacturing complexity. The low-cost gearbox combined with the high power output of brushless outrunner motors and typical high efficiencies of planetary gear arrangements results in compact, powerful and cost-effective robotic actuators with the potential to impact a number of industries ranging from consumer products to manufacturing and healthcare. In this paper we present the latest design improvements for the GBD so that we reduce friction and maximize efficiency. We also present a new design software for the GBD that has also been developed to reduce trial and error during the design phase and to speed up the production process.


2015 ◽  
Vol 748 ◽  
pp. 175-178
Author(s):  
Wen Xiu Yu ◽  
Su Jie Qin ◽  
Zuo Ping Xiong ◽  
Zhong Qiang Ren ◽  
Xue Wen Wang ◽  
...  

Multi-walled carbon nanotubes/reduced graphene oxide (MWCNT/rGO) hybrid films have attracted increasing massive attention due to their unique advantages such as high conductivity, superior mechanical property and thermal properties. In this work, a novel, facile and low cost method was developed to fabricate the MWCNT/rGO flexible ultrathin hybrid films with the thickness of about 55 nm. These hybrid films can be fabricated repeatedly through layer-by-layer exfoliation on the surface of liquids, and transferred to various substrates. The devices based on MWCNT/rGO hybrid films offer a unique platform for integrating carbon nanomaterials for advanced electronics, energy, and sensor applications.


2016 ◽  
Vol 7 ◽  
pp. 149-196 ◽  
Author(s):  
Marco Notarianni ◽  
Jinzhang Liu ◽  
Kristy Vernon ◽  
Nunzio Motta

The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.


2016 ◽  
Vol 4 (6) ◽  
pp. 2137-2146 ◽  
Author(s):  
Zhi Zhang ◽  
Shichun Mu ◽  
Bowei Zhang ◽  
Lu Tao ◽  
Shifei Huang ◽  
...  

Carbon nanotubes (CNTs) are firstly synthesized through a novel low cost self-vaporized chemical vapor deposition (SCVD) technique, which represents a novel approach toward large scale production of CNTs.


Author(s):  
Marcel Simsek ◽  
Nongnoot Wongkaew

AbstractNon-enzymatic electrochemical sensors possess superior stability and affordability in comparison to natural enzyme-based counterparts. A large variety of nanomaterials have been introduced as enzyme mimicking with appreciable sensitivity and detection limit for various analytes of which glucose and H2O2 have been mostly investigated. The nanomaterials made from noble metal, non-noble metal, and metal composites, as well as carbon and their derivatives in various architectures, have been extensively proposed over the past years. Three-dimensional (3D) transducers especially realized from the hybrids of carbon nanomaterials either with metal-based nanocatalysts or heteroatom dopants are favorable owing to low cost, good electrical conductivity, and stability. In this critical review, we evaluate the current strategies to create such nanomaterials to serve as non-enzymatic transducers. Laser writing has emerged as a powerful tool for the next generation of devices owing to their low cost and resultant remarkable performance that are highly attractive to non-enzymatic transducers. So far, only few works have been reported, but in the coming years, more and more research on this topic is foreseeable. Graphical abstract


MRS Bulletin ◽  
2006 ◽  
Vol 31 (6) ◽  
pp. 471-475 ◽  
Author(s):  
Marc Chason ◽  
Daniel R. Gamota ◽  
Paul W. Brazis ◽  
Krishna Kalyanasundaram ◽  
Jie Zhang ◽  
...  

AbstractDevelopments originally targeted toward economical manufacturing of telecommunications products have planted the seeds for new opportunities such as low-cost, large-area electronics based on printing technologies. Organic-based materials systems for printed wiring board (PWB) construction have opened up unique opportunities for materials research in the fabrication of modular electronic systems.The realization of successful consumer products has been driven by materials developments that expand PWB functionality through embedded passive components, novel MEMS structures (e.g., meso-MEMS, in which the PWB-based structures are at the milliscale instead of the microscale), and microfluidics within the PWB. Furthermore, materials research is opening up a new world of printed electronics technology, where active devices are being realized through the convergence of printing technologies and microelectronics.


2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Jana Šefčovičová ◽  
Jan Tkac

AbstractMicrobial cell biosensors, where cells are in direct connection with a transducer enabling quantitative and qualitative detection of an analyte, are very promising analytical tools applied mainly for assays in the environmental field, food industry or biomedicine. Microbial cell biosensors are an excellent alternative to conventional analytical methods due to their specificity, rapid detection and low cost of analysis. Nowadays, nanomaterials are often used in the construction of biosensors to improve their sensitivity and stability. In this review, the combination of microbial and other individual cells with different nanomaterials (carbon nanotubes, graphene, gold nanoparticles, etc.) for the construction of biosensors is described and their applications are provided as well.


2002 ◽  
Vol 737 ◽  
Author(s):  
D. Sarangi ◽  
A. Karimi

ABSTRACTCarbon nanotubes on metallic wires may be act as electrode for the field emission (FE) luminescent devices. Growing nanotubes on metallic wires with controlled density, length and alignment are challenging issues for this kind of devices. We, in the present investigation grow carbon nanotubes directly on the metal wires by a powerful but simple technique. A novel approach has been proposed to align nanotubes during growth. Methane, acetylene and dimethylamine have been used as source gases. With the same growth conditions (viz. pressure, growth temperature and plasma) methane does not produce any nanotube but nanotubes grown with dimethylamine show shorter length and radius than acetylene. The effect of temperature to control the radius, time to control the density, plasma conditions to align the nanotubes has been focused. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Rutherford Back Scattering (RBS) are used to characterize the nanotubes.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


Sign in / Sign up

Export Citation Format

Share Document