scholarly journals Wear Behavior and Machining Performance of TiAlSiN-Coated Tools Obtained by dc MS and HiPIMS: A Comparative Study

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5122
Author(s):  
Vitor F. C. Sousa ◽  
Francisco J. G. Silva ◽  
Hernâni Lopes ◽  
Rafaela C. B. Casais ◽  
Andresa Baptista ◽  
...  

Duplex stainless steels are being used on applications that require high corrosion resistance and excellent mechanical properties, such as the naval and oil-gas exploration industry. The components employed in these industries are usually obtained by machining; however, these alloys have low machinability when compared to conventional stainless steels, usually requiring the employment of tool coatings. In the present work, a comparative study of TiAlSiN coating performance obtained by these two techniques in the milling of duplex stainless-steel alloy LDX 2101 was carried out. These coatings were obtained by the conventional direct current magnetron sputtering (dc MS) and the novel high power impulse magnetron sputtering (HiPIMS). The coatings were analyzed and characterized, determining mechanical properties for both coatings, registering slightly higher mechanical properties for the HiPIMS-obtained coating. Machining tests were performed with varying cutting length and feed-rate, while maintaining constant values for axial and radial depth of cut and cutting speed. The surface roughness of the material after machining was assessed, as well as the wear sustained by each of the tool types, identifying the wear mechanisms and behavior of these tools, as well as registering the flank wear values presented for each of the tested tools. The HiPIMS-obtained coating exhibited a very similar behavior when compared to the other, producing similar surface roughness quality. However, the HiPIMS coating exhibited less wear for higher cutting lengths, proving to be a better choice in this case, especially regarding tool life.

2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3418 ◽  
Author(s):  
Khanna ◽  
Airao ◽  
Gupta ◽  
Song ◽  
Liu ◽  
...  

These days, power consumption and energy related issues are very hot topics of research especially for machine tooling process industries because of the strict environmental regulations and policies. Hence, the present paper discusses the application of such an advanced machining process i.e., ultrasonic assisted turning (UAT) process with the collaboration of nature inspired algorithms to determine the ideal solution. The cutting speed, feed rate, depth of cut and frequency of cutting tool were considered as input variables and the machining performance of Nimonic-90 alloy in terms of surface roughness and power consumption has been investigated. Then, the experimentation was conducted as per the Taguchi L9 orthogonal array and the mono as well as bi-objective optimizations were performed with standard particle swarm and hybrid particle swarm with simplex methods (PSO-SM). Further, the statistical analysis was performed with well-known analysis of variance (ANOVA) test. After that, the regression equation along with selected boundary conditions was used for creation of fitness function in the subjected algorithms. The results showed that the UAT process was more preferable for the Nimconic-90 alloy as compared with conventional turning process. In addition, the hybrid PSO-SM gave the best results for obtaining the minimized values of selected responses.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Muhammad Yanis ◽  
Amrifan Saladin Mohruni ◽  
Safian Sharif ◽  
Irsyadi Yani

Thin walled titanium alloys are mostly applied in the aerospace industry owing to their favorable characteristic such as high strength-to-weight ratio. Besides vibration, the friction at the cutting zone in milling of thin-walled Ti6Al4V will create inconsistencies in the cutting force and increase the surface roughness. Previous researchers reported the use of vegetable oils in machining metal as an effort towards green machining in reducing the undesirable cutting friction. Machining experiments were conducted under Minimum Quantity Lubrication (MQL) using coconut oil as cutting fluid, which has better oxidative stability than other vegetable oil. Uncoated carbide tools were used in this milling experiment. The influence of cutting speed, feed and depth of cut on cutting force and surface roughness were modeled using response surface methodology (RSM) and artificial neural network (ANN). Experimental machining results indicated that ANN model prediction was more accurate compared to the RSM model. The maximum cutting force and surface roughness values recorded are 14.89 N, and 0.161 µm under machining conditions of 125 m/min cutting speed, 0.04 mm/tooth feed, 0.25 mm radial depth of cut (DOC) and 5 mm axial DOC. 


Author(s):  
Y. B. Guo ◽  
Jie Sun

End milling titanium Ti-6Al-4V has wide applications in aerospace, biomedical, and chemical industries. However, milling induced surface integrity has received little attention. In this study, a series of end milling experiment were conducted to comprehensively characterize surface integrity at various milling conditions. The experimental results have shown that the milled surface shows the anisotropic nature with a surface roughness range in 0.6 μm–1.2 μm. Surface roughness increases with feed and radial depth-of-cut (DoC), but varies with the cutting speed range. Compressive residual normal stress occurs in both cutting and feed directions, while the influences of cutting speed and feed on residual stress trend are quit different. The microstructure analysis shows that β phase becomes much smaller and severely deformed in the very near surface with the cutting speed. The milled surfaces are at least 60% harder than the bulk material in the subsurface.


2010 ◽  
Vol 139-141 ◽  
pp. 782-787
Author(s):  
Yue Ding ◽  
Wei Liu ◽  
Xi Bin Wang ◽  
Li Jing Xie ◽  
Jun Han

In this study, surface roughness generated by face milling of 38CrSi high-strength steel is discussed. Experiments based on 24 factorial design and Box-Behnken design method are conducted to investigate the effects of milling parameters (cutting speed, axial depth of cut and radial depth of cut and feed rate) on surface roughness, and a second-order model of surface roughness is established by using surface response methodology (RSM); Significance tests of the model are carried out by the analysis of variance (ANOVA). The results show that the most important cutting parameter is feed rate, followed by radial depth of cut, cutting speed and axial depth of cut. Moreover, it is verified that the predictive model possesses highly significance by the variance examination at a level of confidence of 99%. And the relationship between surface roughness and the important interaction terms is nonlinear.


2011 ◽  
Vol 325 ◽  
pp. 418-423 ◽  
Author(s):  
Song Zhang ◽  
Jian Feng Li

Surface roughness plays a significant role in machining industry for proper planning of process system and optimizing the cutting conditions. In this paper, a back-propagation neural network (BPNN) model has been developed for the prediction of surface roughness in end milling process. A large number of milling experiments were conducted on Ti-6Al-4V alloy using the uncoated carbide tools. Four cutting parameters including cutting speed, feed per tooth, radial depth of cut, and axial depth of cut are used as the inputs to develop the BPNN model, while surface roughness corresponding to these combinations of different cutting parameters is the output of the neural network model. The performance of the trained BPNN model has been verified with the experimental results, and it is found that the BPNN predicted and the experimental values are very close to each other.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7306
Author(s):  
Xueli Song ◽  
Hongshan Zhang

In this paper, the evolutions of cutting force, cutting temperature, and surface roughness, and the corresponding machinability in asymmetric up-milling of TC25 alloy are investigated. The results indicated that radial depth of cut generated opposite influence on the cutting force/cutting temperature versus surface roughness. The reason can be accounted as the intertwining of feed marks at low radial depth of cut, and the mechanism of hard cutting at a high radial depth of cut. Moreover, the asymmetry has a significant effect on the machinability in asymmetry up-milling TC25 alloy. Changing the asymmetry, i.e., the radial depth of cut, can alter the machinability while maintain the balanced development of various indexes. The machinability reaches the best when the radial depth of cut is ae = 8 mm. The axial depth of cut and feed per tooth should be selected as large as possible to avoid work hardening and to improve machining efficiency in asymmetric up-milling TC25 alloy. The cutting speed should be controlled within Vc = 100–120 m/min to obtain better machinability. On the basis of this research, it is expected to find optimized milling parameters to realize high efficiency milling of TC25 alloy.


2010 ◽  
Vol 126-128 ◽  
pp. 911-916 ◽  
Author(s):  
Yuan Wei Wang ◽  
Song Zhang ◽  
Jian Feng Li ◽  
Tong Chao Ding

In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide inserts. The signal-to-noise (S/N) ratio are employed to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on surface roughness, and the optimal combination of the cutting parameters for the desired surface roughness is obtained. An exponential regression model for the surface roughness is formulated based on the experimental results. Finally, the verification tests show that surface roughness generated by the optimal cutting parameters is really the minimum value, and there is a good agreement between the predictive results and experimental measurements.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1172
Author(s):  
Abdulmajeed Dabwan ◽  
Saqib Anwar ◽  
Ali M. Al-Samhan ◽  
Mustafa M. Nasr

The machining of the electron beam melting (EBM) produced parts is a challenging task because, upon machining, different part orientations (EBM layers’ orientations) produce different surface quality even when the same machining parameters are employed. In this paper, the EBM fabricated parts are machined in three possible orientations with regard to the tool feed direction, where the three orientations are “tool movement in a layer plane” (TILP), “tool movement perpendicular to layer planes” (TLP), and “tool movement parallel to layers planes” (TPLP). The influence of the feed rate, radial depth of cut, and cutting speed is studied on surface roughness, cutting force, micro-hardness, microstructure, chip morphology, and surface morphology of Ti6Al4V, while considering the EBM part orientations. It was found that different orientations have different effects on the machined surface during milling. The results show that the EBM parts can achieve good surface quality and surface integrity when milled along the TLP orientation. For instance, surface roughness (Sa) can be improved up to 29% when the milling tool is fed along the TLP orientation compared to the other orientations (TILP and TPLP). Furthermore, surface morphology significantly improves with lower micro-pits, redeposited chips, and feed marks in case of the TLP orientation.


Sign in / Sign up

Export Citation Format

Share Document