scholarly journals Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5466
Author(s):  
Dereje Tadesse Mekonnen ◽  
Esayas Alemayehu ◽  
Bernd Lennartz

The excessive discharge of phosphate from anthropogenic activities is a primary cause for the eutrophication of aquatic habitats. Several methodologies have been tested for the removal of phosphate from aqueous solutions, and adsorption in a flow-through reactor is an effective mechanism to reduce the nutrient loading of water. This research aimed to investigate the adsorption potential of leftover coal material to remove phosphate from a solution by using continuous flow fixed-bed column, and analyzes the obtained breakthrough curves. A series of column tests were performed to determine the phosphorus breakthrough characteristics by varying operational design parameters such as adsorbent bed height (5 to 8 cm), influent phosphate concentration (10–25 mg/L), and influent flow rate (1–2 mL/min). The amorphous and crystalline property of leftover coal material was studied using XRD technology. The FT-IR spectrum confirmed the interaction of adsorption sites with phosphate ions. Breakthrough time decreased with increasing flow rate and influent phosphate concentration, but increased with increasing adsorbent bed height. Breakthrough-curve analysis showed that phosphate adsorption onto the leftover coal material was most effective at a flow rate of 1 mL/min, influent phosphate concentration of 25 mg/L, and at a bed height of 8 cm. The maximal total phosphate adsorbed onto the coal material’s surface was 243 mg/kg adsorbent. The Adams–Bohart model depicted the experimental breakthrough curve well, and overall performed better than the Thomas and Yoon–Nelson models did, with correlation values (R2) ranging from 0.92 to 0.98. Lastly, leftover coal could be used in the purification of phosphorus-laden water, and the Adams–Bohart model can be employed to design filter units at a technical scale.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Nan Li ◽  
Jing Ren ◽  
Lin Zhao ◽  
Zhong-liang Wang

Removal of phosphate from solution using nanosized FeOOH-modified anion resin was studied in fixed bed column. Effect of bed height and flow rate on the breakthrough curves were investigated. Longer breakthrough time was obtained by increasing the bed height and decreasing the flow rate. Bed service depth time (BDST) model was applied to recount the relationship between bed service time and bed height. The value ofN0was calculated to be 21.4 g/L. Yoon-Nelson model, which fitted well with the experimental data, is allowable to estimate the breakthrough curves and characteristic parameters for phosphate adsorption in the column filled with nanosized FeOOH-modified anion resin.


2011 ◽  
Vol 695 ◽  
pp. 29-32
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of expanding rice husk (ERH) fixed bed column in removing Zn (II) from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that ERH was found to be an effective adsorbent for removal of Zn (II); and when conducted with Zn (II) concentration 12.8 mg L-1and flow rate 10 ml min-1with different bed depths such as 3, 6 and 9 cm, the equilibrium uptake was decreased from 5.181 to 4.33 mg g-1; the equilibrium uptake also decreased from 4.51 to 3.807 mg g-1with increasing of flow rate from 5 to 15 ml min-1and increased from 4.447 to 5.752 mg g-1when initial concentration increased from 12.8 to 35 mg L-1. The dynamics of adsorption process was modeled by bed depth service time (BDST), and indicating the validity of BDST model when applied to the continuous column studies.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Ali Kara ◽  
Gökhan Ekrem Üstün ◽  
Seval Kutlu Akal Solmaz ◽  
Emel Demirbel

Removal of Pb(II) ions from electroplating wastewater of Bursa, an industrial city in Turkey, was investigated in fixed-bed column. The experiments were conducted to study the effect of important design parameters such as column bed height and flow rate. The breakthrough profiles were obtained in these studies. At a bed height of 14 cm and flow rate of 6 mL/min, the metal-uptake capacity of poly(ethylene glycol dimethacrylate-1-vinylimidazole) [poly(EGDMA-VIM)] beads for Pb(II) ions was found to be 90 mg/g. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluate the performance of adsorption column. For various flow rates, adsorption capacity per unit bed volume (N0) and adsorption rate constant (ka) are in the range of 2370–3560 mg/mL and 0.0225–0.0616 L/mg h, respectively. The saturated column was easily regenerated by 0.1 M HNO3and the poly(EGDMA-VIM) beads in fixed-bed column could be reused for Pb(II) ions removal.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 215-232 ◽  
Author(s):  
Jaime López-Cervantes ◽  
Dalia I Sánchez-Machado ◽  
Reyna G Sánchez-Duarte ◽  
Ma A Correa-Murrieta

A continuous adsorption study in a fixed-bed column was carried out using a chitosan–glutaraldehyde biosorbent for the removal of the textile dye Direct Blue 71 from an aqueous solution. The biosorbent was prepared from shrimp shells and characterized by scanning electron microscopy, X-ray diffraction, and nuclear magnetic resonance spectroscopy. The effects of chitosan–glutaraldehyde bed height (3–12 cm), inlet Direct Blue 71 concentration (15–50 mg l−1), and feed flow rate (1–3 ml min−1) on the column performance were analyzed. The highest bed capacity of 343.59 mg Direct Blue 71 per gram of chitosan–glutaraldehyde adsorbent was obtained using 1 ml min−1 flow rate, 50 mg l−1 inlet Direct Blue 71 concentration, and 3 cm bed height. The breakthrough curve was analyzed using the Adams–Bohart, Thomas, and bed depth service time mathematical models. The behaviors of the breakthrough curves were defined by the Thomas model at different conditions. The bed depth service time model showed good agreement with the experimental data, and the high values of correlation coefficients (R2 ≥ 0.9646) obtained indicate the validity of the bed depth service time model for the present column system.


2021 ◽  
Author(s):  
Junxiu Ye ◽  
Min Yang ◽  
Xuemei Ding ◽  
Wei Tan ◽  
Guizhen Li ◽  
...  

Abstract A continuous fixed-bed column study has been used to evaluate phosphate adsorption performance of U-D-Na which was functionalized by the cheap NaCl reagent after simple ultrasonic purification of diatomite. Experimentally, various effect factors, the flow rate, the initial phosphate concentration, and the bed height on breakthrough time of fixed column were studied. Experimental results showed that the breakthrough time declined with the increase of inlet phosphorous concentration and feed rate, whereas the increase of bed height turned out to significantly prolong the breakthrough time. The dynamic adsorption data could better be fitted by the Thomas model, with the correlation coefficients obtained, R2 > 0.9000 at the majority of operating conditions (5/7). At least thrice loop of adsorption and desorption was achieved with 0.1 M hydrochloric acid eluent and deionized water. The results proved that U-D-Na could be used as a better alternative phosphate adsorbent from wastewater in a continuous column process.


2017 ◽  
Vol 18 (2) ◽  
pp. 94-104
Author(s):  
Rozaimi Abu Samah

The main objective of this work was to design and model fixed bed adsorption column for the adsorption of vanillin from aqueous solution. Three parameters were evaluated for identifying the performance of vanillin adsorption in fixed-bed mode, which were bed height, vanillin initial concentration, and feed flow rate. The maximum adsorption capacity was increased more than threefold to 314.96 mg vanillin/g resin when the bed height was increased from 5 cm to 15 cm. Bohart-Adams model and Belter equation were used for designing fixed-bed column and predicting the performance of the adsorption process. A high value of determination coefficient (R2) of 0.9672 was obtained for the modelling of vanillin adsorption onto resin H103.


2010 ◽  
Vol 658 ◽  
pp. 53-56
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of low-cost adsorbent such as rice husk fixed bed column in removing copper from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that at 10 mg/L concentration of Cu (Ⅱ) and at flow rate 5 mL/min with different bed depths such as 9, 12 and 15 cm, the breakthrough time increases from 150 to 260 min; the breakthrough time increases from 125 to 780 min with decreasing of flow rate from 15 to 5 mL/min and decreased from 260 to 50 min when initial concentration increased from 7 to 50 mg/L.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1912
Author(s):  
Huijie Zhu ◽  
Qiang Huang ◽  
Mingyan Shi ◽  
Shuai Fu ◽  
Xiuji Zhang ◽  
...  

The effectiveness of nanoscale zero-valent iron(nZVI) immobilized on activated carbon (nZVI/AC) in removing antimonite (Sb(III)) from simulated contaminated water was investigated with and without a magnetic fix-bed column reactor. The experiments were all conducted in fixed-bed columns. A weak magnetic field (WMF) was proposed to increase the exclusion of paramagnetic Sb(III) ions by nZVI/AC. The Sb(III) adsorption to the nZVI and AC surfaces, as well as the transformation of Sb(III) to Sb(V) by them, were both increased by using a WMF in nZVI/AC. The increased sequestration of Sb(III) by nZVI/AC in the presence of WMF was followed by faster nZVI corrosion and dissolution. Experiments were conducted as a function of the pH of the feed solution (pH 5.0–9.0), liquid flow rate (5–15 mL·min−1), starting Sb(III) concentration (0.5–1.5 mg·L−1), bed height nZVI/AC (10–40 cm), and starting Sb(III) concentration (0.5–1.5 mg·L−1). By analyzing the breakthrough curves generated by different flow rates, different pH values, different inlet Sb(III) concentrations, and different bed heights, the adsorbed amounts, equilibrium nZVI uptakes, and total Sb(III) removal percentage were calculated in relation to effluent volumes. At pH 5.0, the longest nZVI breakthrough time and maximal Sb(III) adsorption were achieved. The findings revealed that the column performed effectively at the lowest flow rate. With increasing bed height, column bed capacity and exhaustion time increased as well. Increasing the Sb(III) initial concentration from 0.5 to 1.5 mg·L−1 resulted in the rise of adsorption bed capacity from 3.45 to 6.33 mg·g−1.


2014 ◽  
Vol 70 (2) ◽  
pp. 192-199 ◽  
Author(s):  
Yanyan Wang ◽  
Xiang Zhang ◽  
Qiuru Wang ◽  
Bing Zhang ◽  
Jindun Liu

We used natural resources of halloysite nanotubes and alginate to prepare a novel porous adsorption material of organic–inorganic hybrid beads. The adsorption behaviour of Cu(II) onto the hybrid beads was examined by a continuous fixed bed column adsorption experiment. Meanwhile, the factors affecting the adsorption capacity such as bed height, influent concentration and flow rate were investigated. The adsorption capacity (Q0) reached 74.13 mg/g when the initial inlet concentration was 100 mg/L with a bed height of 12 cm and flow rate of 3 ml/min. The Thomas model and bed-depth service time fitted well with the experimental data. In the regeneration experiment, the hybrid beads retained high adsorption capacity after three adsorption–desorption cycles. Over the whole study, the new hybrid beads showed excellent adsorption and regeneration properties as well as favourable stability.


Sign in / Sign up

Export Citation Format

Share Document