scholarly journals Fixed-bed Column Dynamics of Ultrasound and Na-functionalized Diatomite to Remove Phosphate from Water

Author(s):  
Junxiu Ye ◽  
Min Yang ◽  
Xuemei Ding ◽  
Wei Tan ◽  
Guizhen Li ◽  
...  

Abstract A continuous fixed-bed column study has been used to evaluate phosphate adsorption performance of U-D-Na which was functionalized by the cheap NaCl reagent after simple ultrasonic purification of diatomite. Experimentally, various effect factors, the flow rate, the initial phosphate concentration, and the bed height on breakthrough time of fixed column were studied. Experimental results showed that the breakthrough time declined with the increase of inlet phosphorous concentration and feed rate, whereas the increase of bed height turned out to significantly prolong the breakthrough time. The dynamic adsorption data could better be fitted by the Thomas model, with the correlation coefficients obtained, R2 > 0.9000 at the majority of operating conditions (5/7). At least thrice loop of adsorption and desorption was achieved with 0.1 M hydrochloric acid eluent and deionized water. The results proved that U-D-Na could be used as a better alternative phosphate adsorbent from wastewater in a continuous column process.

2020 ◽  
Vol 85 (7) ◽  
pp. 953-965
Author(s):  
Saurabh Meshram ◽  
Chandrakant Thakur ◽  
Anupam Soni

Battery recycling generates large amount of effluent which contains the toxic Pb(II) beyond the permissible limit. This effluent was treated for the removal of Pb(II) by fixed bed adsorption onto steam-activated granular carbon. Effect of flow rate, bed diameter and bed height on the performance of fixed bed column was investigated. The experimental data was presented in the form of breakthrough curve. Bed exhaustion time, breakthrough time and adsorbent capacity were determined. The obtained experimental data were evaluated with the four kinetic models: Thomas, Yoon?Nelson, Adams?Bohart and Clark model. The data were fitted well to the Thomas, Yoon?Nelson and Clark model with correlation coefficient R2 > 0.96.


2010 ◽  
Vol 6 (5) ◽  
Author(s):  
Boon-Seang Chu ◽  
Siew-Young Quek ◽  
Badlishah Sham Baharin ◽  
Yaakob Bin Che Man

Desorption of vitamin E from silica-packed fixed-bed column was studied as functions of column bed height, column temperature and flow rate of isopropanol. Isopropanol was the desorbing solvent and it was eluted through the columns saturated with vitamin E. The desorption profiles of all systems showed that vitamin E might desorb at two distinct rates simultaneously. The slow desorbing step was the rate-controlling process for recovery of vitamin E. The desorption rate increased with the decrease of column bed height and flow rate, but increased with increasing column temperature. This indicated that the desorption process was an endothermic process. The percentage recovery of vitamin E upon completion of desorption was considered high for all systems, ranging from 94.8 to 98.8%, with vitamin E concentration in the extract of 18.5-21.5%. Although the bed height, column temperature and flow rate were functions of desorption rate, it appeared that percentage recovery and vitamin E concentration in the extract were rather unaffected by the operating conditions tested if the column was eluted by isopropanol for a sufficient time to desorb vitamin E. Nevertheless, the use of isopropanol would be more efficient if desorption was carried out at lower flow rate and higher column temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Nan Li ◽  
Jing Ren ◽  
Lin Zhao ◽  
Zhong-liang Wang

Removal of phosphate from solution using nanosized FeOOH-modified anion resin was studied in fixed bed column. Effect of bed height and flow rate on the breakthrough curves were investigated. Longer breakthrough time was obtained by increasing the bed height and decreasing the flow rate. Bed service depth time (BDST) model was applied to recount the relationship between bed service time and bed height. The value ofN0was calculated to be 21.4 g/L. Yoon-Nelson model, which fitted well with the experimental data, is allowable to estimate the breakthrough curves and characteristic parameters for phosphate adsorption in the column filled with nanosized FeOOH-modified anion resin.


2013 ◽  
Vol 743-744 ◽  
pp. 498-503
Author(s):  
Shan Lin ◽  
Yu Dong Lu ◽  
Xiao Xuan Lin ◽  
Zong Hua Wu

A continuous dynamic adsorption in a fixed-bed column was studied by canna edulis ker residue (CEKR) as an adsorbent for the removal of Cr (VI) ions from aqueous solution. The dynamic adsorption process was simulated by some mathematic models, to determine the characteristic parameters of the column. The results indicated that CEKR could effectively absorb Cr (VI) ions from aqueous solution. Breakthrough time reaching saturation increased significantly with the increase of the temperature, while the bed depth increased and the pH value decreased. In comparison, the initial metal concentration is able to slightly affect the adsorption. Some mathematical models could calculate the rate constants, correlation coefficients, the equilibrium adsorption and kinetic parameters, however, they were not suitable for the description the dynamic adsorption of Cr (VI) ions in the fixed-bed column.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Nouria Nabbou ◽  
Elhassan Benyagoub ◽  
Meriem Belhachemi ◽  
Mustapha Boumelik ◽  
Moncef Benyahia

AbstractThis present work is a part of the liquid discharges treatment topic by studying the removal performance for thermotolerant coliforms (FC) and fecal streptococci (F.Strep) by a local natural light green clay from Kenadsa (Bechar-Algeria) under continuous adsorption processes in a fixed-bed column. The study estimated the clay adsorbing efficiency by the adsorption technique for bacteria contaminating the dairy effluent by determining the bacterial load before and after treatment. The mean log counts per 100 ml for FC and F.Strep were assessed by MPN method on liquid medium. The clay material characterizations were made through X-ray diffraction, X fluorescence spectrometry and Fourier transform infrared spectroscopy analysis. Besides, some parameters were estimated such as the breakthrough time tb (clay filter breakdown); the amount of the contaminating bacteria that was removed at the breakthrough time Xb and the exhaustion of disinfection capacity Xe; the total amount of contaminating bacteria flowing through the column Xtotal; and the total removal efficiency (Y). According to the XRD, XRF and FTIR results, the predominant mineral constituents were silicon dioxide, aluminum oxide, ferric oxide and magnesium oxide with rates of 59,44; 18,09; 7,79; and 3,87%, respectively, and hence, their classification among non-swelling clay minerals, illite is the major mineral group of this material. The results of the bacteriological analysis of raw dairy effluents showed an average bacterial load of 3,88 Log10 and 4,1 Log10 CFU/100 mL for FC and F.Strep, respectively, exceeding the thresholds set by the national and the international regulations. The results of the dairy effluents treated by the tested material have shown that the used clay has a relatively high adsorption property for the clay fixed-bed system (3 cm of bed height), expressed by a total removed efficiency Y (%) of FC and F.Strep used to evaluate the column performance ranging from 55 to 84%. It gives a higher log removal for FC and F.Strep (0.98–1.65 Log10) reported from the first adsorption process, and a breakthrough time ranged from 100 to 250 min, which was inversely proportional to the initial bacterial load of discharges and also linked to the nature of the bacterial contaminants. When the breakthrough occurs earlier, the column service life will be shortened. For the studied parameters, the results of treated effluent complied with national and WHO regulations for unrestricted agricultural irrigation, otherwise, as authorized effluents to be discharged into nature without risks. These preliminary results are very promising at laboratory scale as an innovative green technology, treatment method respecting the environment and opens up prospects for the future, where the modification or the optimization of operating conditions such as the bed height of the fixed bed for adsorption, the volumetric flow rate or the clay structure like the particle size distribution of the adsorbents, known as one of the adsorbent classes endowed with an antimicrobial property, can improve the column performance, and further, the removal or even more the disinfection process by adsorption method.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5466
Author(s):  
Dereje Tadesse Mekonnen ◽  
Esayas Alemayehu ◽  
Bernd Lennartz

The excessive discharge of phosphate from anthropogenic activities is a primary cause for the eutrophication of aquatic habitats. Several methodologies have been tested for the removal of phosphate from aqueous solutions, and adsorption in a flow-through reactor is an effective mechanism to reduce the nutrient loading of water. This research aimed to investigate the adsorption potential of leftover coal material to remove phosphate from a solution by using continuous flow fixed-bed column, and analyzes the obtained breakthrough curves. A series of column tests were performed to determine the phosphorus breakthrough characteristics by varying operational design parameters such as adsorbent bed height (5 to 8 cm), influent phosphate concentration (10–25 mg/L), and influent flow rate (1–2 mL/min). The amorphous and crystalline property of leftover coal material was studied using XRD technology. The FT-IR spectrum confirmed the interaction of adsorption sites with phosphate ions. Breakthrough time decreased with increasing flow rate and influent phosphate concentration, but increased with increasing adsorbent bed height. Breakthrough-curve analysis showed that phosphate adsorption onto the leftover coal material was most effective at a flow rate of 1 mL/min, influent phosphate concentration of 25 mg/L, and at a bed height of 8 cm. The maximal total phosphate adsorbed onto the coal material’s surface was 243 mg/kg adsorbent. The Adams–Bohart model depicted the experimental breakthrough curve well, and overall performed better than the Thomas and Yoon–Nelson models did, with correlation values (R2) ranging from 0.92 to 0.98. Lastly, leftover coal could be used in the purification of phosphorus-laden water, and the Adams–Bohart model can be employed to design filter units at a technical scale.


2020 ◽  
Vol 9 (2) ◽  
pp. 5-13
Author(s):  
Dragana Marković-Nikolić ◽  
Goran Petković ◽  
Nebojša Ristić ◽  
Danijela Bojić ◽  
Miloš Durmišević ◽  
...  

A fixed bed column was applied to remove nitrate ions from an aqueous solution using a cationic modified pumpkin shell as a sorbent. The fixed bed column performances were assessed by varying the influent nitrate concentrations (50 mg dm-3 and 100 mg dm-3) and flow rates (20 cm 3 min-1 and 40 cm 3 min-1) with 13 cm bed height of the sorbent. The obtained results showed that increase of the concentration of the initial nitrate solution affects the increase in the amount of nitrate in the effluent and reduces the breakthrough time. A higher flow rate led to the faster column exhaustion, resulting in the shortened lifespan of the column. In this study, the best nitrate removal was achieved for an initial nitrate solution of 100 mg dm-3 at the flow rate of 20 cm 3 min-1 , when a total nitrate removal of 86% is reached. The relationship between the sorption capacity of this sorbent and the varied parameters was assessed and predicted using two different theoretical breakthrough curve models: the Thomas and Yoon-Nelson models. This study confirmed that the cationic modified pumpkin shell in the fixed bed column has good potential for removing nitrate from aqueous solutions.


2014 ◽  
Vol 665 ◽  
pp. 491-494 ◽  
Author(s):  
Jia Jia Wang ◽  
Hui Huang ◽  
Jun Wei Wang ◽  
Shi Ying Tao

Porous starch was prepared by replacing ice crystals in frozen starch gel with ethanol using a solvent exchange method. Porous starch was packed in a laboratory scale fixed-bed column to continuous remove Methylene Blue (MB) from aqueous solution through adsorption. The effects of bed height, feed flow rate and initial MB concentration on the breakthrough time were investigated. The breakthrough time decreased with increase in the flow rate and initial MB concentration, and also varied with the change in bed height. Bed Depth Service Time (BDST) model was used to determine the column kinetic parameters, and showed good agreement with the experimental data.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2011 ◽  
Vol 64 (3) ◽  
pp. 654-660 ◽  
Author(s):  
Xiuli Han ◽  
Wei Wang ◽  
Xiaojian Ma

The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble–Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g−1 at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.


Sign in / Sign up

Export Citation Format

Share Document