scholarly journals Experimental Investigation to Study the Feasibility of Fabricating Ultra-Conductive Copper Using a Hybrid Method

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5560
Author(s):  
Mahesh K. Pallikonda ◽  
Taysir H. Nayfeh

Ultra-conductive copper (UCC) has an enormous potential to disrupt the existing electrical and electronic systems. Recent studies on carbon nanotubes (CNTs), a new class of materials, showed the ballistic conductance of electricity. Researchers around the world are able to demonstrate ultra-conductivity in micro- and millimeter-length sections using various processing techniques by embedding CNTs in the copper matrix. Although multiple methods promise the possibility of producing copper-based nanocomposites with gains in electrical conductivity, thus far, scaling up these results has been quite a challenge. We investigated a hybrid method of both hot-pressing followed by rolling in order to produce UCC wire. Cu/CNT billets of 1/10%, 1/15%, and 1/20% were hot-pressed and the conductivity results were compared to a hot-pressed pure copper billet. Our results indicated that this method is not a viable approach, as the gains in electrical conductivity are neutralized, followed by attenuation of the wire cross-section.

2016 ◽  
Vol 682 ◽  
pp. 270-275 ◽  
Author(s):  
Mateusz Wąsik ◽  
Joanna Karwan-Baczewska

Copper based Metal Matrix Composites are promising materials for electrical and electrotechnical applications such as electronic packaging and contacts, resistance welding electrodes, heat exchangers etc. Introducing the ceramics particles into the copper matrix allows to achieve a higher mechanical properties comparing to pure copper. The literature shows the variety of reinforcement materials are used. The most commonly strengthening phase include: oxides Al2O3,Y2O3, SiO2, carbides SiC, WC, TiC, ZrC, borides TiB2, ZrB2 and others such us volcanic tuff, carbon or intermetalic phases Al-Fe. [1-7]. It is obvious that reinforcement material without TiN leads to decrease the electrical conductivity of copper. Preliminary investigations concerning nanoscale Cu-based composites with TiN particles were presented in papers [10, 11]. Powder metallurgy (PM) process leads to obtain uniform distribution of strengthening phase in matrix. In order to achieve uniform distribution the process parameters such as mixing and selection the sizes of particles must be appropriate selected. The another factor of decreasing the mechanical and electrical properties by using PM route is porosity. Conventional PM process includes pressing and sintering does not always allow to achieve the high density what is one of the main criterion for high electrical conductivity material. The hard ceramic particles in metal matrix which are not deformable make difficult the densification process. In some cases the use of more advanced methods of production is desirable. The use of titanium nitride particles is justified by their high electrical conductivity in compare to the other reinforcement materials.


2020 ◽  
Vol 993 ◽  
pp. 723-729 ◽  
Author(s):  
Yu Zhang ◽  
Yan Li ◽  
Yan Chun Li ◽  
Mei Hui Song ◽  
Xiao Chen Zhang

Graphene(Gr) reinforced copper matrix composites(Gr/Cu) were prepared by powder metallurgy process, and the effects of graphene content on microstructure and properties of the composites were investigated. The microstructure, density, hardness and electrical conductivity of the composites were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), density measurement, hardness tester and conductivity meter. The microstructure results show that with the increase of graphene content, the number of pores in the composites increased continuously, and the interface of the composites was well bonded. It was observed that there was no cracking and obvious interfacial reaction. However there were a lot of dislocations and twins in the matrix Cu, which might be the main reason for the decrease of the conductivity of the composites. The results of the composites’ properties revealed that with the increase of graphene content, the density and electrical conductivity of the composites decreased, the hardness increased first and then decreased. When the mass fraction of graphene was 0.5%, the maximum HBW was 175, and when the mass fraction of graphene was 3%, the density and conductivity of the composites decreased by 12% and 45% respectively, compared with pure copper.


2010 ◽  
Vol 148-149 ◽  
pp. 416-419
Author(s):  
Bao Hong Tian ◽  
Cheng Dong Xia ◽  
Shu Guo Jia

Cu-Al2O3 composites were prepared by a new simplified internal oxidation process integrating with powder metallurgical process, and then the hot extrusion and the cold rolling processes were carried out. The microstructure, electrical conductivity, hardness, tensile strength and thermal stability of the composites were investigated. The results show that Cu-Al2O3 composites were fabricated successfully by the simplified process in which internal oxidation completed during the sintering. There are a mass of fine Al2O3 particles in size varying from 5 nm to 20nm dispersed in copper matrix after sintering 950 for 4h. After sintered at 950 for 4h and extruded at 950 followed with the cold deforming of 80%, the electrical conductivity, hardness, tensile strength and softening temperature of composite reach 81%IACS, 137HV, 561MPa and 850 respectively. It is considered that the dispersion strengthening and strain hardening have greatly contribution to the Cu-Al2O3 composites fabricated with the simplified process.


2014 ◽  
Vol 564 ◽  
pp. 455-460
Author(s):  
Faiz Ahmad ◽  
Muhammad Aslam ◽  
M. Rafi Raza ◽  
Ali S. Muhsan ◽  
M.irfan Shirazi

The performance of the micro-chip is affected by overheating and hence reduces the efficiency of electronic devices. The development of high thermal conductivity material can solve problems associated with dissipation of heat from the micro-chips. Thermal conductivity for carbon nanotubes (CNTs) are in the ranges of 1200-3000 W/moK which considered as the best candidate material for heat sink applications. This research investigates the fabrication of CNTs reinforced copper composites using powder metallurgy method. Copper powder and CNTs were ball milled to prepare mixtures and compacted at 600 MPa to fabricate test samples. The compacted test samples were sintered in argon atmosphere at 850oC. Sintered density of CNTs/Cu composites was measured and compared with theoretical density. Density data showed that 98% sintered density was achieved. Optical and scanning electron microscopic (SEM) examination of sintered compacts showed good grain growth, however porosity was also noted in sintered samples. Field emission scanning electron microscopy (FESEM) showed well dispersion of CNTs in copper matrix and interfacial bonding between copper particle and CNTs. In this experiment, the addition of 2 % vol. CNTs in copper matrix showed 9% increase in thermal conductivity approximately compared to thesintered pure copper.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


2018 ◽  
Vol 5 (4) ◽  
pp. 046519 ◽  
Author(s):  
Nidhi Sharma ◽  
Zahid A Khan ◽  
Arshad Noor Siddiquee ◽  
Suha K Shihab ◽  
Mohd Atif Wahid

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 339 ◽  
Author(s):  
Yong Wang ◽  
Jinguo Wang ◽  
Haohao Zou ◽  
Yutong Wang ◽  
Xu Ran

Cu-2.4 wt.%V nanocomposite has been prepared by mechanical alloy and vacuum hot-pressed sintering technology. The composites were sintered at 800 °C, 850 °C, 900 °C, and 950 °C respectively. The microstructure and properties of composites were investigated. The results show that the Cu-2.4 wt.%V composite presents high strength and high electrical conductivity. The composite sintered at 900 °C has a microhardness of 205 HV, a yield strength of 404.41 MPa, and an electrical conductivity of 79.5% International Annealed Copper Standard (IACS); the microhardness and yield strength reduce gradually with the increasing consolidation temperature, which is mainly due to the growth of copper grain size. After sintering, copper grain size and V nanoparticle both maintain in nanoscale; the strengthening mechanism is related to grain boundary strengthening and dispersion strengthening, while the grain boundary strengthening mechanism plays the most important role. This study indicates that the addition of small amounts of V element could enhance the copper matrix markedly with the little sacrifice of electrical conductivity.


2020 ◽  
Vol 993 ◽  
pp. 646-653
Author(s):  
Shao Hui Liu ◽  
Yu Zhao ◽  
Xu Ran

In order to improve the interfacial bonding between graphene and copper and improve the dispersibility of graphene in the copper matrix, a novel method was used to prepare graphene. Firstly, graphene oxide (GO) was prepared by the modified Hummer's method, and then the reduced graphene oxide-supported cobalt nanoparticle composite powder (Co@RGO) was prepared by one-step in-situ reduction method. The fabricated materials were mixed with copper powder to obtain various volume fractions. The powder mixture was subjected to compression and discharge plasma sintering (SPS) to prepare a bulk copper-based composite material. The microstructure and its comprehensive properties were studied by SEM, TEM, XRD, FTIR and Raman. The results show that the agglomeration of graphene can be effectively inhibited after the cobalt nanoparticles supported on the graphene surface. The proper amount of Co@RGO could be uniformly dispersed in the copper matrix. The composite material showed a high electrical conductivity (>86% IACS), and the Vickers hardness also increased by about 30% compared with pure copper.


Sign in / Sign up

Export Citation Format

Share Document