scholarly journals Textile-Based Mechanical Sensors: A Review

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6073
Author(s):  
Zaiwei Zhou ◽  
Nuo Chen ◽  
Hongchuan Zhong ◽  
Wanli Zhang ◽  
Yue Zhang ◽  
...  

Innovations related to textiles-based sensors have drawn great interest due to their outstanding merits of flexibility, comfort, low cost, and wearability. Textile-based sensors are often tied to certain parts of the human body to collect mechanical, physical, and chemical stimuli to identify and record human health and exercise. Until now, much research and review work has been carried out to summarize and promote the development of textile-based sensors. As a feature, we focus on textile-based mechanical sensors (TMSs), especially on their advantages and the way they achieve performance optimizations in this review. We first adopt a novel approach to introduce different kinds of TMSs by combining sensing mechanisms, textile structure, and novel fabricating strategies for implementing TMSs and focusing on critical performance criteria such as sensitivity, response range, response time, and stability. Next, we summarize their great advantages over other flexible sensors, and their potential applications in health monitoring, motion recognition, and human-machine interaction. Finally, we present the challenges and prospects to provide meaningful guidelines and directions for future research. The TMSs play an important role in promoting the development of the emerging Internet of Things, which can make health monitoring and everyday objects connect more smartly, conveniently, and comfortably efficiently in a wearable way in the coming years.

2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Rajeshwar S. Bobade

Abstract Conducting polymers (CPs) provide a class of processible, film forming semiconductors and metals. Electrical and optical properties of CPs, similar to those of metals and semiconductors, and the attractive properties associated with conventional polymers such as ease of synthesis and processing, has given these polymers a wide range of applications in the microelectronics industry, in biological field and also as humidity, chemical and mechanical sensors. The principal interest in the use of polymers lies in the scope for low cost manufacturing. Organic polymers offer several advantages over analogous inorganic semiconductors, the most important of which are the processability and the large surface film technology together with the possibility of tuning the polymer properties through a chemical design of the constituent units. In contrast, problems of environmental stability and the inability to process these into useful devices constitute the main drawbacks of organic materials. To set a material suitable for applications in various technological fields one has to improve the processability, mechanical strength and environmental stability of the polyheterocycles: one method adopted to do this is synthesizing the composites of conducting polymers within a matrix of insulating polymers. In this paper, the science of conducting polymers will be discussed. A review from literature on selected applications of organic devices based on conducting polythiophene and its composites will be discussed with a view to targeting the areas of future research in this topic.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jianfei Xi ◽  
Guoqing Yang ◽  
Jie Cai ◽  
Zhongzhu Gu

As a product generated from incomplete combustion, soot is harmful to people’s health and the environment. In recent decades, much attention has been paid to the control of soot generation in combustion systems. Efforts to reduce soot emissions depend on a basic understanding of the physical and chemical pathways from fuel to soot particles in flames. At the same time, flame synthesis method has become an alternative method for the preparation of carbon nanomaterials because of its advantages of low cost and mass production. Carbon-based materials can be synthesized within the sooting zones in flames. The research of soot formation mechanism in flames can provide support for the synthesis of carbon nanomaterials. In this paper, the effects of additives, temperature, and fuel type on soot formation characteristics and soot nanostructure in diffusion flames are reviewed. The deficiencies and prospects are put forward for future research.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yunhui Bao ◽  
Jian He ◽  
Ke Song ◽  
Jie Guo ◽  
Xianwu Zhou ◽  
...  

Metal nanoparticles (MNPs) have been widely used in several fields including catalysis, bioengineering, photoelectricity, antibacterial, anticancer, and medical imaging due to their unique physical and chemical properties. In the traditional synthesis method of MNPs, toxic chemicals are generally used as reducing agents and stabilizing agents, which is fussy to operate and extremely environment unfriendly. Based on this, the development of an environment-friendly synthesis method of MNPs has recently attracted great attention. The use of plant extracts as reductants and stabilizers to synthesize MNPs has the advantages of low cost, environmental friendliness, sustainability, and ease of operation. Besides, the as-synthesized MNPs are nontoxic, more stable, and more uniform in size than the counterparts prepared by the traditional method. Thus, green preparation methods have become a research hotspot in the field of MNPs synthesis. In this review, recent advances in green synthesis of MNPs using plant extracts as reductants and stabilizers have been systematically summarized. In addition, the insights into the potential applications and future development for MNPs prepared by using plant extracts have been provided.


Author(s):  
Z.C. Kang ◽  
Z.L. Wang

Fullerene C60 and nano-tubes are a group of unique structures of carbon. These structures are producei using a carbon electrode arc-discharge technique, but it has not been successful in producing carbon spheres Recently, a new mixed-valent oxide-catalytic carbonization (MVOCC) process has been invented that can b used to synthesize monodispersed nano-size graphitic carbon spheres at low cost and with large quantities [3] The carbon spheres were produced at 1100° C by decomposition of natural gas (methane) under the catalytic assistance of transitional/rare earth metal oxides with mixed valences. The product is pure and separated fron the catalyst, thus, no purification is needed. The MVOCC process does not produce any environmenta hazardous chemicals, and the catalyst is reusable. The carbon spheres are expected to have extraordinary mechanical, physical and chemical properties and potential applications in the areas such as high-strengfi composite materials, environmental filtering, catalysis, lubrication and surface coating.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Kateryna Bazaka ◽  
Mohan V. Jacob

Abstract In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.


Author(s):  
Hong Duc Doan ◽  
Naoki Iwatani ◽  
Kazuyoshi Fushinobu

Laser beam shaping techniques are important to optimize a large number of laser-material processing applications and laser-material interaction studies. The authors have developed a novel fluidic laser beam shaper (FLBS) with merits such as flexiblility, versatility and low cost. This work presents a fundamentally new approach for laser beam shaping by using FLBS. A Gaussian beam profile is transformed to a flat top beam and annular beam profile in the focal plane. The shaped laser beam is used for laser drilling to investigate the influence of the laser intensity profile in laser processing. The paper concludes with suggestions for future research and potential applications for further the work.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 135 ◽  
Author(s):  
Yijian Huang ◽  
Shuhui Liu ◽  
Lichao Zhang ◽  
Yiping Wang ◽  
Ying Wang

A high sensitivity fiber-optic sensor based on self-imaging effect in a hollow-core capillary waveguide (HCCW) is presented for sensing applications. The sensor is composed of a section of HCCW fusion spliced between single mode fibers (SMFs). The self-imaging effect in the HCCW is investigated with different fiber lengths and arc-fusion parameters. By infiltrating the hollow core with index matching liquids, the peak wavelength of the proposed device shifts towards longer wavelengths. The temperature and refractive index (RI) responses of the sensor are studied systematically. When temperature is increased from 25 °C to 75 °C, the temperature sensitivity of the device can be improved significantly with the infiltrated structure, and reaches −0.49 nm/°C, compared with that of the un-filled device, which is 9.8 pm/°C. For the RI response, the liquid-filled structure achieves sensitivity of 12,005 nm/RIU in the range between 1.448 and 1.450, slightly higher than the 11,920 nm/RIU achieved by the un-filled one. The proposed sensor exhibits the advantages of simple structure, high sensitivity and low cost, which may find potential applications in physical and chemical sensing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1328
Author(s):  
Jafar Ali ◽  
Saira Naveed Elahi ◽  
Asghar Ali ◽  
Hassan Waseem ◽  
Rameesha Abid ◽  
...  

The current coronavirus disease 2019 (COVID-19) outbreak is considered as one of the biggest public health challenges and medical emergencies of the century. A global health emergency demands an urgent development of rapid diagnostic tools and advanced therapeutics for the mitigation of COVID-19. To cope with the current crisis, nanotechnology offers a number of approaches based on abundance and versatile functioning. Despite major developments in early diagnostics and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is still a need to find effective nanomaterials with low cost, high stability and easy use. Nanozymes are nanomaterials with innate enzyme-like characteristics and exhibit great potential for various biomedical applications such as disease diagnosis and anti-viral agents. Overall the potential and contribution of nanozymes in the fight against SARS-CoV-2 infection i.e., rapid detection, inhibition of the virus at various stages, and effective vaccine development strategies, is not fully explored. This paper discusses the utility and potential of nanozymes from the perspective of COVID-19. Moreover, future research directions and potential applications of nanozymes are highlighted to overcome the challenges related to early diagnosis and therapeutics development for the SARS-CoV-2. We anticipate the current perspective will play an effective role in the existing response to the COVID-19 crisis.


2018 ◽  
Author(s):  
Lorraine Tudor Car ◽  
Bhone Myint Kyaw ◽  
Josip Car

BACKGROUND Digital technology called Virtual Reality (VR) is increasingly employed in health professions’ education. Yet, based on the current evidence, its use is narrowed around a few most applications and disciplines. There is a lack of an overview that would capture the diversity of different VR applications in health professions’ education and inform its use and research. OBJECTIVE This narrative review aims to explore different potential applications of VR in health professions’ education. METHODS The narrative synthesis approach to literature review was used to analyse the existing evidence. RESULTS We outline the role of VR features such as immersion, interactivity and feedback and explain the role of VR devices. Based on the type and scope of educational content VR can represent space, individuals, objects, structures or their combination. Application of VR in medical education encompasses environmental, organ and micro level. Environmental VR focuses on training in relation to health professionals’ environment and human interactions. Organ VR educational content targets primarily human body anatomy; and micro VR microscopic structures at the level of cells, molecules and atoms. We examine how different VR features and health professional education areas match these three VR types. CONCLUSIONS We conclude by highlighting the gaps in the literature and providing suggestions for future research.


Sign in / Sign up

Export Citation Format

Share Document