scholarly journals Lightweight concrete with coarse aggregate from ceramic waste at high temperatures

2020 ◽  
Vol 13 (2) ◽  
pp. 433-454
Author(s):  
L. PASSOS ◽  
A. L. MORENO Jr. ◽  
A. A. A. SOUZA

Abstract With the increasing use of recycled materials from civil construction, mainly as substitute for some aggregates in concrete mixtures, it is necessary to obtain technical information on the performance of these new mixtures. National and international research on the use of ceramic waste in concrete production highlight good results of this new material’s mechanical performance in environmental situations. However, little is known about its behavior at high temperatures. In this context, we sought to verify the performance of concrete mixtures produced with aggregates from ceramic block waste at high temperatures, with evaluation of their residual mechanical strength, axial compressive strength and elastic modulus, and also their tendency to spalling in fire situations. The RILEM-129 MHT method [1] was used for the assessment of residual mechanical strength, and the tendency to spalling was evaluated according to the procedure suggested by Souza and Moreno [2]. In both these evaluations, there is no national standard, and, in the case of spalling, not even an international standard. Three concrete mixtures were used, one prepared with natural coarse basalt aggregate (reference) and the other two by replacing part of this natural aggregate with aggregate from ceramic block waste (40% and 100% of substitution in volume). In the end, it is concluded that the substitution of natural coarse aggregate for lightweight aggregate from ceramic block waste can be an excellent alternative to increase the resistance of concrete to fire. Thus, the results of mechanical strength and spalling in a fire situation, unprecedented in our country, can greatly support the decision-making about the use of this alternative material in the national construction industry.

2021 ◽  
Vol 920 (1) ◽  
pp. 012014
Author(s):  
R M K Tahara ◽  
M H Hasnan ◽  
N Z N Azizan

Abstract Conventional construction materials are considered as exploitation to natural resources. Thus, numerous alternative materials using natural or waste materials are proposed for concrete production as a response for greener, renewable and biodegradable environments with regard to sustainability. Natural fibre such as bamboo has been rapidly proposed for many applications especially for concrete production in construction. In order to tackle the environmental issues and focusing on sustainability, natural fibre of Beting bamboo is proposed for partial replacement used as supplementary cementitious materials. Current study investigates the partial replacement of coarse aggregate with Beting bamboo in concrete mixtures. The outcome of the study discovers that through the mix design, replacing 5% by weight of Beting bamboo is an ideal % to achieve concrete mixture for structural and nonstructural application. However, with the increase % of Beting bamboo for partial replacement, the strength of the concrete gradually decreased.


Author(s):  
Barkha Verma

Abstract: Aggregates provide volume at low cost, comprising 66% to 78% of the concrete. With increasing concern over the excessive exploitation of natural and quality aggregates, the aggregate produced from industrial wastes and agricultural wastes is the viable new source for building material. This study was carried out to determine the possibilities of using coconut shells as aggregate in concrete. Utilizing coconut shells as aggregate in concrete production not only solves the problem of disposing of this solid waste but also helps conserve natural resources. In this paper, the physical properties of crushed coconut shell aggregate were presented. The fresh concrete properties such as the density and slump and 28 days compressive strength of lightweight concrete made with coconut shell as coarse aggregate were also presented. The findings indicate that water absorption of the coconut shell aggregate was high about 24% but crushing value and impact value were comparable to that of other lightweight aggregates. The average fresh concrete density and 28days cube compressive strength of the concrete using coconut shell aggregate 1975kg/m3 and 19.1 N/mm2 respectively. It is concluded that crushed coconut shell is suitable when it is used as a substitute for conventional aggregates in lightweight concrete production. Keywords: Coarse Aggregate, Cement, Concrete, Fly Ash, Coconut shell Aggregate, Water, Compressive Strength, Workability, Fine Aggregate.


2020 ◽  
Vol 3 (2) ◽  
pp. 275
Author(s):  
Olyndia Febrianita ◽  
Ahmad Ridwan ◽  
Yosef Cahyo Setianto Poernomo

Concrete is a technology that continues to develop in the construction sector. Continues to increase in terms of cost. The need for materials to form concrete requires innovation in the use of concrete mixtures. One of them is using the innovation of rice husk ash and ceramic waste. These ingredients is held in the cement content, namely rice husk ash containing silica and ceramic waste containing alumina. The method used refers to the Indonesian National Standard with a cylindrical specimen measuring 15x30 cm tested at 28 days, and the planned quality is fc '14.5 Mpa. The research objective was to determine the compressive strength and slump value by adding a mixture of rice husk ash 3%, 6%, 9%, 12%, and ceramic waste 3% by weight of cement. The results showed that the slump value decreased with the lowest value of 13.5 cm. the results of the compressive strength of concrete with the addition of rice husk ash and ceramic waste have not achieved the planned quality. The average compressive strength that has the highest value is the addition of 9% rice husk ash with 9% ceramic waste, namely 6.53 Mpa.Beton merupakan salah satu teknologi yang terus berkembang di bidang konstruksi. Terus meningkat dari segi biaya, Kebutuhan bahan untuk membentuk beton membutuhkan inovasi dalam penggunaan campuran beton. Salah satunya dengan inovasi pemanfaatan abu sekam padi dan limbah keramik. Bahan tersebut tertahan di dalam kandungan semen yaitu abu sekam padi yang mengandung silika dan limbah keramik yang mengandung alumina. Metode yang digunakan mengacu pada Standar Nasional Indonesia dengan spesimen silinder berukuran 15x30 cm yang diuji pada 28 hari, dan kualitas yang direncanakan adalah fc '14 .5 Mpa. Tujuan penelitian untuk mengetahui kuat tekan dan nilai slump dengan menambahkan campuran abu sekam padi 3%, 6%, 9%, 12%,   dan   limbah   keramik   3%   dari   berat  semen.   Hasil Penelitian menunjukkan nilai slump mengalami penurunan dengan nilai terendah 13,5cm. Hasil kuat tekan beton dengan penambahan abu sekam padi dan limbah keramik belum mencapai kualitas yang direncanakan. Kuat tekan rata-rata yang memiliki nilai tertinggi adalah penambahan abu sekam 9% dengan limbah keramik 9% yaitu 6,53 Mpa


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6803
Author(s):  
Shan Gao ◽  
Sumei Zhang ◽  
Lanhui Guo

Among the techniques for converting stacked coal gangue to reusable material, one of the most effective ways is to use coal gangue as a coarse aggregate in green concrete productions. The physical and chemical properties of rock and spontaneous-combustion coal gangue are generally suitable for being used as a coarse aggregate in green concrete. Coal gangue concrete is not recommended to be used in subsurface structures, as its water absorption law would be changed under a large replacement ratio. The mechanical performance of coal gangue concrete is degraded by raising the replacement ratio. Over-low and -high concrete grades are not suggested to be used as coal gangue aggregate, unless extra admixtures or specific methods are used. The influence of coal gangue on the durability of coal gangue concrete is remarkable, resulting from the porous structure of coal gangue that provides more transmission channels for air and liquid in concrete, but is beneficial for thermal insulation. The usage of coal gangue in structural concrete members is still limited. The mechanical behavior of some structural members using coal gangue concrete has been reported. Among them, concrete filled steel tubes are a preferable configuration for using coal gangue concrete, regarding both the mechanical and durability performance.


Author(s):  
Mohamed Tarek El-Hawary ◽  
Amr Maher Elnemr ◽  
Nagy Fouad Hanna

About 30% of the ceramic production all over the world considered as waste. This huge amount of ceramic waste can be recycled in the construction industry, especially in concrete mix design, which is the main scope of this research. Ceramic wastes could provide many advantages rather than sustainability. It is considered economical and can replace cement, coarse aggregate, and fine aggregate, such as sand. In this study, several concrete mixtures were designed according to the ACI standards to assess the ceramic waste concrete for fresh and hardened properties in terms of slump, concrete compressive, splitting tensile and flexural strengths. Six mixes included with 0%, 10%, 20%, 30%, 40% and 50% replacement of coarse aggregate by crushed ceramic waste. By comparing the results between ceramic waste concrete and conventional concrete specimens, the optimum mix design was found to be at 30%-coarse aggregate replacement. Scanning electron microscope tests performed on the concrete specimens to examine the bond between the particles, the porosity, and the elementary composition of the specimens. The percentage of savings in cost estimated when using the optimum mix design (30% coarse aggregate replacement) was about a 30% reduction in the construction cost per the Egyptian market.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Luis F. Jiménez ◽  
Eric I. Moreno

The use of recycled aggregates in structural concrete production has the inconvenience of increasing the fluid transport properties, such as porosity, sorptivity, and permeability, which reduces the resistance against penetration of environmental loads such as carbon dioxide and chloride ion. In this paper, behavior of ten concrete mixtures with different percentages of coarse aggregate replacement was studied. The recycled material was recovered by crushing of concrete rubble and had high absorption values. The results showed that it is possible to achieve good resistance to carbonation and chloride penetration with up to 50% replacement of recycled coarse aggregate for 0.5 water/cement ratio. Finally, new indexes for porosity and sorptivity were proposed to assess the quality of concrete.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 166
Author(s):  
Piotr Brzozowski ◽  
Jarosław Strzałkowski ◽  
Piotr Rychtowski ◽  
Rafał Wróbel ◽  
Beata Tryba ◽  
...  

The aim of the research was to determine how the admixture of nanosilica affects the structure and mechanical performance of cement concrete exposed to high temperatures (200, 400, 600, and 800 °C). The structural tests were carried out on the cement paste and concrete using the methods of thermogravimetric analysis, mercury porosimetry, and scanning electron microscopy. The results show that despite the growth of the cement matrix’s total porosity with an increasing amount of nanosilica, the resistance to high temperature improves. Such behavior is the result of not only the thermal characteristics of nanosilica itself but also of the porosity structure in the cement matrix and using the effective method of dispersing the nanostructures in concrete. The nanosilica densifies the structure of the concrete, limiting the number of the pores with diameters from 0.3 to 300 μm, which leads to limitation of the microcracks, particularly in the coarse aggregate-cement matrix contact zone. This phenomenon, in turn, diminishes the cracking of the specimens containing nanosilica at high temperatures and improves the mechanical strength.


Author(s):  
Cláudio Nelson Mateus Lucas ◽  
Maximiliano dos Anjos Azambuja ◽  
Vicente Luiz Scalon

With the advancement of concrete production technologies, such as the development of additives, use of different aggregates, dosing methods, mixing and application equipment, they have contributed to the emergence of concrete with special characteristics, as is the case with light concrete. Given the above, this research continues the experimental studies of structural lightweight concrete with expanded clay (coarse aggregate) developed by Lucas and Azambuja (2020). This research presents the results of mechanical properties at older ages, 28 days 214 days for Trait 1 (AN100%) and Trait 2 (AB20%) compared to the results of 7 days of age, however, the main contribution was the measurement of thermal conductivity with construction of a low-cost prototype in accordance with NBR 15220-4:2005, using the protected hot plate method. The results showed compressive strength values ​​of a minimum of 17,8 MPa at 7 days of age and a maximum of 28,6 MPa at 214 days, values ​​above 17 MPa established by NBR NM 35:1995 at 28 days, as well as the tensile strength by diametrical compression, which also presented values ​​that served as a basis for framing concrete as lightweight and structural. The evaluation of thermal conductivity was performed using a hot plate, in which the results were satisfactory between 0,44 and 0,71 W/(m.k), appropriate values ​​to answer the question of thermal performance, thus as well as complying with the established by ABNT NBR 15220-2:2008.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Habibur Rahman Sobuz ◽  
Noor Md. Sadiqul Hasan ◽  
Nafisa Tamanna ◽  
Md. Saiful Islam

Conventional building materials are widely used in a developing country like Malaysia. This type of material is costly. Oil palm shell (OPS) is a type of farming solid waste in the tropical region. This paper aims to investigate strength characteristics and cost analysis of concrete produced using the gradation of OPS 0–50% on conventional coarse aggregate with the mix proportions 1 : 1.65 : 2.45, 1 : 2.5 : 3.3, and 1 : 3.3 : 4.2 by the weight of ordinary Portland cement, river sand, crushed stone, and OPS as a substitution for coarse aggregate. The corresponding w/c ratios were used: 0.45, 0.6, and 0.75, respectively, for the defined mix proportions. Test results indicate that compressive strength of concrete decreased as the percentage of the OPS increased in each mix ratio. Other properties of OPS concrete, namely, modulus of rupture, modulus of elasticity, splitting tensile strength, and density, were also determined and compared to the corresponding properties of conventional concrete. Economic analysis also indicates possible cost reduction of up to 15% due to the use of OPS as coarse aggregate. Finally, it is concluded that the use of OPS has great potential in the production of structural lightweight concrete.


Sign in / Sign up

Export Citation Format

Share Document