scholarly journals Material Performance and Animal Clinical Studies on Performance-Optimized Hwangtoh Mixed Mortar and Concrete to Evaluate Their Mechanical Properties and Health Benefits

Materials ◽  
2015 ◽  
Vol 8 (9) ◽  
pp. 6257-6276 ◽  
Author(s):  
Bon-Min Koo ◽  
Jang-Ho Kim ◽  
Tae-Kyun Kim ◽  
Byung-Yun Kim
2017 ◽  
Vol 907 ◽  
pp. 99-103
Author(s):  
Sergiu Ciprian Focșăneanu ◽  
Petrică Vizureanu ◽  
Andrei Victor Sandu ◽  
Mădălina Simona Bălţatu

Ceramic materials are used for the fabrication of dental restorations respectively esthetic dentistry. The main ceramic materials are glass ceramics, spinel, alumina and zirconia. Zirconia was introduced into dentistry domain in the 1990s used like frameworks, implants, dowels, abutments and orthodontic brackets. Recently, zirconia materials are getting much attention for dental implants because of its toothlike color, mechanical properties, good corrosion and biocompatibility. This article presents an review of zirconia dental implants osseointegration and mechanical strength compared with other dental implants. Clinical studies published indicate that zirconia dental implants have the potential to become alternative of titanium dental implants used in medical applications.


2019 ◽  
Vol 39 (5) ◽  
pp. 1851-1891 ◽  
Author(s):  
Akhand Pratap Singh ◽  
Rachna Singh ◽  
Sumit Singh Verma ◽  
Vipin Rai ◽  
Catherine H. Kaschula ◽  
...  

2016 ◽  
Vol 64 (22) ◽  
pp. 4435-4449 ◽  
Author(s):  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
Tamara Y. Forbes-Hernandez ◽  
Patricia Reboredo-Rodriguez ◽  
Bruno Mezzetti ◽  
...  

2011 ◽  
Vol 250-253 ◽  
pp. 540-547
Author(s):  
Zhao Ming Huang ◽  
Yu Fei Yuan ◽  
Zi Yun Wen

At present, masonry and plaster of AAC blocks are still carried out by traditional construction methods which often lead to some quality defects such as cracking and leaking in the wall and hollowing and spalling in the plaster layer, etc. and hinder greatly the popularization and application of AAC blocks. On the basis of the characteristics of AAC blocks and the dry masonry thin-bed mortar, a kind of high performance dry-mixed Mortar for dry masonry process of AAC blocks was developed. The mortar has excellent workability, high water-retention, property, good mechanical properties and good construction properties. It solves the problems caused by traditional construction methods. The mechanism for these is discussed.


Author(s):  
Fahrizal Zulkarnain ◽  
Mahyuddin Ramli

Kajian ini membentangkan sebahagian hasil kerja makmal untuk reka bentuk konkrit ringan berbusa dengan Protein Agent 1 sebagai busa, silica fume (SF) sebagai bahan tambah dan superplasticizer (SP). Konkrit ringan berbusa terkawal dicampurkan dengan kandungan simen Portland biasa (OPC) dan silica fume, campuran tersebut pada kadar 10 peratus, dari berat simen sebagai bahan tambah akan disediakan. Silica fume digunakan untuk meningkatkan kekuatan mampat dan juga menjimatkan kos. Konkrit berbusa diawetkan pada kisaran 70 peratus kelembapan dan 28 darjah kandungan udara. Sifat mekanikal daripada struktur konkrit ringan berbusa juga didedahkan. Dapatan kajian menunjukkan bahawa serapan air dalam kajian besar adanya. Walaupun demikian, silica fume perlu digunakan untuk menghasilkan struktur ringan berbusa yang murah dan mesra alam, dengan kekuatan mampat dan kawalan struktur ringan berbusa menggunakan simen Portland biasa (OPC) sahaja. Kata kunci: Campuran konkrit berbusa; ketumpatan mortar; ketumpatan sebenar; sifat mekanikal; kekuatan mampat This paper presents part of the results of laboratory work to design a lightweight foamed concrete made with Protein Agent 1 as foam, silica fume (SF) mineral admixture and superplasticizer (SP). Control of foamed concrete mixture made with foam containing only Ordinary Portland Cement (OPC) and SF, lightweight foam concrete mixture containing 10% of SF as a replacement for the cement in weight basis was prepared. SF is used to increase the compressive strength and for economical concerns. The foam concrete was cured at 70% relative humidity and ± 28°C temperature. The mechanical properties of a lightweight foam concrete with OPC are presented. The findings indicate that water absorption of aggregate is large in this case. However, the use of SF seems to be necessary for the production of cheaper and environmentfriendly structural foamed concrete with compressive strength and control structural foamed concrete containing only OPC. Key words: Foam concrete mixed; mortar density; actual density; mechanical properties; compressive strength


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Shu-Chun Zhou ◽  
Heng-Lin Lv ◽  
Ning Li ◽  
Jie Zhang

The effects of hydroxypropyl methyl cellulose ether, starch ether, bentonite, and redispersion emulsoid powder on the working and mechanical properties of fresh dry-mixed mortar were studied. The results show that hydroxypropyl methyl cellulose ether has the greatest impact on the consistency and water retention of ordinary dry-mixed mortar and that redispersion emulsoid powder reduces the water action and starch ether has essentially no effect on water retention. It also shows that the time of mortar condensation when mixed with hydroxypropyl methyl cellulose ether is the longest, followed by redispersion emulsoid powder and bentonite. Starch ether can slightly, but not obviously, extend the setting time of cement mortar. Hydroxypropyl methyl cellulose ether has the greatest impact on the mechanical properties of ordinary dry-mixed mortar, followed by redispersion emulsoid powder, starch ether, and bentonite. As the water retention increases, the setting time of the mortar also increases. The use of water as a thickening material has a retarding effect on the mortar, increases the water-retention rate, and increases the retarding effect. Moreover, increasing the content of the chemical admixtures decreases the strength of cement mortar.


OCL ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. D306 ◽  
Author(s):  
Isabelle Le Huërou-Luron ◽  
Marion Lemaire ◽  
Sophie Blat

Human breast milk (HBM) is the gold standard for the early nutrition of the neonates. The best way to improve infant formulas (IFs) is to mimic both the composition and the structure of HBM components. Supplementation of IF with dairy lipids or bovine milk components such as milk fat globule membrane (MFGM), in partial replacement of plant oils that are currently mainly used, has health benefits for infants. In this article, results of clinical studies on the impact of IF supplementation with MFGM and dairy lipids on psychomotor development and infectious disease prevalence in infants are reviewed and supported by recent pre-clinical studies. Numerous human studies have reported beneficial effects of MFGM supplementation on neurocognitive development and protection against infectious agents without deleterious impact on growth. Based on rodent and porcine studies, benefits of adding bovine MFGM and dairy lipids in IFs on gut digestion, physiology and protection against pathogens and inflammatory challenges have also been highlighted. However, more randomized controlled trials testing IF supplementation with bovine milk fat, and specifically apolar lipids and associated glycoproteins, must be performed to increase scientific-based knowledge, address safety concerns, and study its potential programming role of adult health.


Author(s):  
Rodrigo Felipe Santos ◽  
Rita de Cássia Silva Sant’ana Alvarenga ◽  
Beatryz Mendes ◽  
José Maria Carvalho ◽  
Leonardo Pedroti ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 8385
Author(s):  
Zhenwen Hu ◽  
Zhe Kong ◽  
Guisheng Cai ◽  
Qiuyi Li ◽  
Yuanxin Guo ◽  
...  

Solutions are needed to solve the problem of a large amount of construction solid waste and a shortage of natural aggregate (coarse and fine aggregates). In this paper, simple-crushed coarse aggregate (SCRCA) and simple-crushed fine aggregate (SCRFA) were obtained by simple-crushing of construction solid waste. On this basis, SCRCA and SCRFA were treated with particle-shaping to obtain particle-shaping coarse aggregate (PSRCA) and particle-shaping fine aggregate (PSRFA), and the recycled powder (RP) produced in the process of particle-shaping was collected. Under the condition of a 1:4 cement-sand ratio, RP was used to replace cement with four substitution rates of 0, 10%, 20%, and 30%, and dry-mixed masonry mortar was prepared with 100% SCRFA, PSRFA, and river sand (RS). The basic and mechanical properties and microstructure of hydration products of dry-mixed mortar were analyzed, and the maximum substitution rate of RP was determined. Under the condition that the amount of cementitious material is 400 kg/m3 and the RP is at the maximum replacement rate, three different aggregate combinations to prepare concrete are the 100% use of SCRCA and SCRFA, PSRCA and PSRFA, and RS and natural aggregate (NCA); the workability, mechanical properties, and aggregate interface transition zone of the prepared concrete were analyzed. The results show that when the replacement rate of RP is less than 20%, it has little effect on the properties of products. The performance of PSRCA and PSRFA after treatment is better than that of SCRCA and SCRFA. Under different RP substitution rates, the performance of dry-mixed mortar prepared with PSRFA is very close to that prepared with RS. The performance of recycled concrete prepared with PSRCA and PSRFA is also very close to that of products prepared with NCA and RS. The failure morphology of PSRCA and RSRFA concrete is also similar to that of NCA and RS concrete.


2021 ◽  
Vol 13 (7) ◽  
pp. 1289-1294
Author(s):  
Jin Kim ◽  
Young-Ho Kim ◽  
Jong-Young Lee ◽  
Jung-Geun Han

ABSTRACTThe modern society is a world made of concrete. Many buildings, ports, dams, and other infrastructure are made of concrete. Concrete is mainly composed of aggregate and cement. It is mixed with blended water and used after curing. This study used porous feldspar known to react well with cement to replace fine aggregate and reduce cement content. Although feldspar mortar reduced cement content by 5% (25%–>20%), the compressive strength increased 1.4 to 2.9 times compared to its counterpart, Ready-Mixed Mortar (RMM). Using Hydrogen Nano-Bubble Water (HNBW) as blended water, compressive strength was increased from 7% to a maximum of 23%. This proved that hydrogen nano-bubble water could promote cement hydrate creation and reaction. When hydrogen nano-bubble water was used as blended water, thermal conductivity decreased by a maximum of 30% compared to the use of plain water as blended water. Results of this study indicate that construction materials with improved thermal efficiency could be developed.


Sign in / Sign up

Export Citation Format

Share Document