scholarly journals Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Jun Zhang ◽  
Renjian Deng ◽  
Bozhi Ren ◽  
Mohammed Yaseen ◽  
Andrew Hursthouse

To remove antimony (Sb) ions from water, a novel composite adsorbent was fabricated from ferriferous oxide and waste sludge from a chemical polishing process (Fe3O4@HCO) and encapsulated in sodium alginate (SAB). The SAB adsorbent performed well with 80%–96% removal of Sb (III) ions within a concentration range of 5–60 mg/L. The adsorption mechanism of Sb (III) was revealed to be the synergy of chemisorption (ion exchange) and physisorption (diffusion reaction). The adsorption isotherms and kinetics conformed to the Langmuir isotherm and the pesudo-second-order kinetic model. Both initial pH and temperature influenced the adsorption performance with no collapse of microbeads within solution pH range 3–7. Most importantly for practical applications, these microspheres can be separated and recovered from aqueous solution by a magnetic separation technology to facilitate large-scale treatment of antimony-containing wastewater.

Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 476 ◽  
Author(s):  
Shuxian Tang ◽  
Ying Zhao ◽  
Haitao Wang ◽  
Yuqiao Wang ◽  
Hexiang Zhu ◽  
...  

A polyampholytic superabsorbent polymer (PASAP), sodium alginate-g-(polyacrylic acid-co-allyltrimethylammonium chloride) (SA-g-(PAA-co-PTM)), was prepared by free-radical graft copolymerization and characterized. The polymer exhibited pH-dependent swelling behaviors with extremely high swelling ratios, and was saline tolerant. The dye adsorption properties of SA-g-(PAA-co-PTM) were investigated using methylene blue (MB) as a cationic dye model. It was found that its dye adsorption capacity was significantly affected by the TM content in PASAP and pH of dye solution. The dye adsorption kinetics and isotherm obey the pseudo-second-order kinetic model and the Langmuir isotherm model, respectively, and the adsorption process is chemisorption in nature. In addition, SA-g-(PAA-co-PTM) exhibited high MB adsorption capacities in a wide pH range and reusability in at least five adsorption-desorption cycles, indicating its great application potentials as the adsorbent for dye removals from effluents.


2020 ◽  
Vol 12 (3) ◽  
pp. 1174 ◽  
Author(s):  
Lulit Habte ◽  
Natnael Shiferaw ◽  
Mohd Danish Khan ◽  
Thenepalli Thriveni ◽  
Ji Whan Ahn

In the present work, waste eggshells were used as a precursor for the synthesis of aragonite crystals through the wet carbonation method. Cadmium (Cd2+) and lead (Pb2+) were removed by the synthesized aragonite from synthetic wastewater. The influence of initial solution pH, contact time, Cd2+ and Pb2+ concentration, and sorbent dosage were evaluated. The major sorption was observed in the first 100 mins and 360 mins for Pb2+and Cd2+ respectively reaching sorption equilibrium at 720 mins (12 hr). The sorption capacity toward Pb2+ was much higher than toward Cd2+. Both heavy metals displayed high sorption capacities at initial pH 6. The pseudo-second-order kinetic model fits well with the experimental data with a higher correlation coefficient R2. Two isotherm models were also evaluated for the best fit with the experimental data obtained. Langmuir isotherm best fits the sorption of the metals on aragonite synthesized from eggshells. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) results of sorbent after sorption showed that the mechanism of sorption was dominated by surface precipitation. Therefore, aragonite crystals synthesized from waste eggshells can be a potential substitute source for the removal of Cd2+ and Pb2+ from contaminated water.


2014 ◽  
Vol 675-677 ◽  
pp. 647-653
Author(s):  
Hong Bin Lv ◽  
Yao Li ◽  
Wan You Zhang ◽  
Li Juan Xi

Mg-Fe hydrotalcite-like compounds (Mg-Fe-HTLCs) were synthesized via hydrothermal method, and characterized by XRD and FT-IR. The roasted products were used to remove sulfate ions by the adsorptive ability from aqueous solution. The effects of adsorbent dosage, initial pH and temperature on the sulfate ions removal were fully investigated, and the adsorption kinetics and adsorption isotherms were also studied. Results showed that the synthesized materials with CO32- as the interlayer anions had fine crystallinity. The materials of Mg-Fe hydrotalcite-like compounds had a very good adsorption capacity for aqueous solution with the initial sulfate ions concentration was 500mg/L, pH range from 4 to 8 and temperature of 35°C. Moreover, the adsorption equilibrium was about 90 min under the optical condition. The experimental data showed a good compliance with the pseudo-second-order kinetic model, and the adsorption isotherm data met Langmuir models well. It was found that the maximal adsorption capacity reached 151.51mg/g.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moustafa A. Hamoud ◽  
Karam F. Allan ◽  
Refaat R. Ayoub ◽  
Mohamed Holeil ◽  
Mamdoh R. Mahmoud

AbstractSimultaneous removal of radiocobalt and manganese by adsorption onto polyacrylonitrile/hexadecyltrimethylammonium bromide/potassium copper hexacyanoferrate (PAN/HDTMA/KCuHCF) composite was studied. The synthesized composite was characterized by Fourier-transformed infrared (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The influence of the solution pH was studied in the range 1.5–7.8 and the results showed the effectiveness of the synthesized composite for simultaneous adsorption of radiocobalt and manganese in the pH range 2.5–6 at an adsorbent mass of 4 g/L. Adsorption kinetic data of manganese at the studied concentrations were best fitted by pseudo-second-order kinetic model and the diffusion study showed that the adsorption process was controlled by film diffusion. Thermodynamic parameters (ΔGo, ΔHo and ΔSo) were estimated and the results indicated that adsorption processes of the concerned (radio)toxicants were spontaneous and endothermic in nature. Of the studied isotherm models, Freundlich and Langmuir were the best ones for describing the adsorption isotherm data of radiocobalt and manganese, respectively. The adsorption capacity of PAN/HDTMA/KCuHCF was found to be 23.629 (for radiocobalt) and 62.854 (for manganese). Desorption of Radiocobalt and manganese loaded onto PAN/HDTMA/KCuHCF composite was studied using various desorbing agents at different concentrations.


2019 ◽  
Vol 107 (6) ◽  
pp. 459-467 ◽  
Author(s):  
Shuting Zhuang ◽  
Jianlong Wang

Abstract In this study, phosphate functionalized bacterial cellulose with micro-fibrous structure was prepared, characterized and applied for U(VI) adsorption. The successful grafting of phosphoric functional groups was proved by the FTIR spectra and EDS analysis (P~4.15 wt%), and the porous structure was confirmed by SEM and BET analyses. Furthermore, the effect of initial pH, contact time, initial concentration, and temperature were studied. The as-prepared adsorbent showed a high adsorption capacity at wide pH range (4.0–8.0) and its maximum adsorption capacity was calculated to be 50.65 mg/g. This endothermic adsorption process conformed to the pseudo second-order kinetic model and the Elovich kinetic models and the Langmuir isothermal models. According to the FTIR and XPS analysis, an adsorption mechanism was tentatively proposed, mainly due to the interaction between U(VI) and phosphoric groups.


2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


2021 ◽  
pp. 174751982198996
Author(s):  
Moussa Abbas

Among the different photocatalysts, TiO2 ( Eg = 3.1 eV, zero charge point (pHpzc = 6.3), and surface = 55 m2/g) is currently the most efficient and the most studied semiconductor due to its strong photocatalytic activity, non-toxicity, and chemical stability. The elimination of DR-80 on TiO2 is studied by adsorption in batch mode and by application of heterogeneous photocatalysis onto TiO2 under UV irradiation. The effects of contact time (0–60 min), initial pH (3–11), dose of the adsorbent (0.5–3 g L−1), and DR-80 concentration (40–60 mg L−1) on the adsorption of DR-80 by TiO2 are studied for optimization of these parameters. The kinetic parameters, rate constants, and equilibrium adsorption capacities are calculated and discussed for each applied theoretical model. The adsorption of DR-80 is well described by the pseudo-first-order kinetic model. The fitting of the adsorption isotherms shows that the models of Langmuir and Temkin offering a better fit and an adsorption 64.102 mg/g at 25 °C of DR-80 are eliminated. The results showed that the photocatalytic efficiency strongly depends on the pH while the initial rate of photodegradation is proportional to the catalyst dose, and becomes almost constant above a threshold value. It was found that the photodegradation is favored at low DR-80 concentrations in accordance with the Langmuir–Hinshelwood model with the constants Kad = 6.5274 L/mg and KL–H = 0.17818 mg L−1 min. However, the adsorption is improved for high DR-80 concentrations. It is found that the degradation depends on both the temperature and the pH with a high elimination rate at high temperature. The photocatalyst TiO2 has a better activity for the degradation of DR-80, compared to some commercial catalysts that have been described in the literature.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


2017 ◽  
Vol 75 (6) ◽  
pp. 1500-1511 ◽  
Author(s):  
Shengjiong Yang ◽  
Pengkang Jin ◽  
Xiaochang C. Wang ◽  
Qionghua Zhang ◽  
Xiaotian Chen

In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g−1 and a liberation capacity of 6.79 ± 0.77 mg g−1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


Sign in / Sign up

Export Citation Format

Share Document