scholarly journals Anti-SARS-CoV-2 Activity of Rhamnan Sulfate from Monostroma nitidum

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 685
Author(s):  
Yuefan Song ◽  
Peng He ◽  
Andre L. Rodrigues ◽  
Payel Datta ◽  
Ritesh Tandon ◽  
...  

The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.

2001 ◽  
Vol 69 (12) ◽  
pp. 7413-7418 ◽  
Author(s):  
Tahar van der Straaten ◽  
Angela van Diepen ◽  
Kitty Kwappenberg ◽  
Sjaak van Voorden ◽  
Kees Franken ◽  
...  

ABSTRACT Upon contact with host cells, the intracellular pathogenSalmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribedSalmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonellachromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 104 to 107bacteria in C3H/HeN and 101 to 104 bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lionel Low ◽  
Angeline Goh ◽  
Joanna Koh ◽  
Samantha Lim ◽  
Cheng-I Wang

AbstractAccumulation of mutant p53 proteins is frequently found in a wide range of cancers. While conventional antibodies fail to target intracellular proteins, proteosomal degradation results in the presentation of p53-derived peptides on the tumour cell surface by class I molecules of the major histocompatibility complex (MHC). Elevated levels of such p53-derived peptide-MHCs on tumour cells potentially differentiate them from healthy tissues. Here, we report the engineering of an affinity-matured human antibody, P1C1TM, specific for the unmutated p53125-134 peptide in complex with the HLA-A24 class I MHC molecule. We show that P1C1TM distinguishes between mutant and wild-type p53 expressing HLA-A24+ cells, and mediates antibody dependent cellular cytotoxicity of mutant p53 expressing cells in vitro. Furthermore, we show that cytotoxic PNU-159682-P1C1TM drug conjugates specifically inhibit growth of mutant p53 expressing cells in vitro and in vivo. Hence, p53-associated peptide-MHCs are attractive targets for the immunotherapy against mutant p53 expressing tumours.


2003 ◽  
Vol 197 (6) ◽  
pp. 735-742 ◽  
Author(s):  
Loïc Coutte ◽  
Sylvie Alonso ◽  
Nathalie Reveneau ◽  
Eve Willery ◽  
Brigitte Quatannens ◽  
...  

Pathogen attachment is a crucial early step in mucosal infections. This step is mediated by important virulence factors called adhesins. To exert these functions, adhesins are typically surface-exposed, although, surprisingly, some are also released into the extracellular milieu, the relevance of which has previously not been studied. To address the role of adhesin release in pathogenesis, we used Bordetella pertussis as a model, since its major adhesin, filamentous hemagglutinin (FHA), partitions between the bacterial surface and the extracellular milieu. FHA release depends on its maturation by the specific B. pertussis protease SphB1. We constructed SphB1-deficient mutants and found that they were strongly affected in their ability to colonize the mouse respiratory tract, although they adhered even better to host cells in vitro than their wild-type parent strain. The defect in colonization could be overcome by prior nasal instillation of purified FHA or by coinfection with FHA-releasing B. pertussis strains, but not with SphB1-producing FHA-deficient strains, ruling out a nonspecific effect of SphB1. These results indicate that the release of FHA is important for colonization, as it may facilitate the dispersal of bacteria from microcolonies and the binding to new sites in the respiratory tract.


2016 ◽  
Vol 84 (11) ◽  
pp. 3220-3231 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Tomohiro Agata ◽  
Hirofumi Asano ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Uropathogenic Escherichia coli (UPEC) is a major pathogen that causes urinary tract infections (UTIs). This bacterium adheres to and invades the host cells in the bladder, where it forms biofilm-like polymicrobial structures termed intracellular bacterial communities (IBCs) that protect UPEC from antimicrobial agents and the host immune systems. Using genetic screening, we found that deletion of the fur gene, which encodes an iron-binding transcriptional repressor for iron uptake systems, elevated the expression of type I fimbriae and motility when UPEC was grown under iron-rich conditions, and it led to an increased number of UPEC cells adhering to and internalized in bladder epithelial cells. Consequently, the IBC colonies that the fur mutant formed in host cells were denser and larger than those formed by the wild-type parent strain. Fur is inactivated under iron-restricted conditions. When iron was depleted from the bacterial cultures, wild-type UPEC adhesion, invasion, and motility increased, similar to the case with the fur mutant. The purified Fur protein bound to regions upstream of fimA and flhD , which encode type I fimbriae and an activator of flagellar expression that contributes to motility, respectively. These results suggest that Fur is a repressor of fimA and flhD and that its repression is abolished under iron-depleted conditions. Based on our in vitro experiments, we conclude that UPEC adhesion, invasion, IBC formation, and motility are suppressed by Fur under iron-rich conditions but derepressed under iron-restricted conditions, such as in patients with UTIs.


2018 ◽  
Author(s):  
Shu-Qi Zhang ◽  
Ke-Yue Ma ◽  
Alexandra A. Schonnesen ◽  
Mingliang Zhang ◽  
Chenfeng He ◽  
...  

We present tetramer-associated T-cell receptor sequencing (TetTCR-Seq), a method to link T cell receptor (TCR) sequences to their cognate antigens in single cells at high throughput. Binding is determined using a library of DNA-barcoded antigen tetramers that is rapidly generated by in vitro transcription and translation. We applied TetTCR-Seq to identify patterns in TCR cross-reactivity with cancer neo-antigens and to rapidly isolate neo-antigen-specific TCRs with no cross-reactivity to the wild-type antigen.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9077
Author(s):  
Zizhong Tang ◽  
Caixia Zhou ◽  
Yi Cai ◽  
Yujia Tang ◽  
Wenjun Sun ◽  
...  

Background Amaranthus hybridus L. is an annual, erect or less commonly ascending herb that is a member of the Amaranthaceae family. Polysaccharides extracted from traditional Chinese medicines may be effective substances with antioxidant activity. Methods In this study, we isolated crude polysaccharides from A. hybridus (AHP-M) using microwave-assisted extraction. Then, the AHP-M was purified by chromatography with DEAE-32 cellulose, and two fractions, AHP-M-1 and AHP-M-2, were obtained. The structural characteristics of AHP-M-1 and AHP-M-2 were investigated, and their antioxidant activities were analyzed in vitro. Results We found that the monosaccharide composition of AHP-M-1 was different from that of AHP-M-2. The molecular weights of AHP-M-1 and AHP-M-2 were 77.625 kDa and 93.325 kDa, respectively. The results showed that the antioxidant activity of AHP-M-2 was better than that of AHP-M-1. For AHP-M-2, the DPPH radical scavenging rate at a concentration of 2 mg/mL was 78.87%, the hydroxyl radical scavenging rate was 39.34%, the superoxide anion radical scavenging rate was 80.2%, and the reduction ability of Fe3+ was approximately 0.90. The total antioxidant capacity per milligram of AHP-M-2 was 6.42, which was higher than that of Vitamin C (Vc). Conclusion The in vitro test indicated that AHP-M-1 and AHP-M-2 have good antioxidant activity, demonstrating that A. hybridus L. polysaccharide has immense potential as a natural antioxidants.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Supriya Chakraborty ◽  
Claudio Martines ◽  
Fabiola Porro ◽  
Ilaria Fortunati ◽  
Alice Bonato ◽  
...  

B cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptor (TLR) ligands or T cells. However, the rapid reduction in the percentage of proliferating CLL cells in patients treated with a BTK or SYK inhibitor suggests that the BCR may be more directly involved, at least in a subset of cases. To further address this issue, we investigated the expression of cell cycle regulatory proteins in human and Eμ-TCL1-derived murine CLL cells stimulated with immobilized anti-IgM or cognate antigen, respectively. In both cases, BCR stimulation induced the expression of the positive cell cycle regulators MYC, CCND1, CCND2 and CDK4, consistent with G1 cell cycle entry, but also induced the expression of the negative regulators CDKN1A, CDKN2A and CDKN2B, which block cell cycle progression. Since combined deficiency of these negative regulators occurs in approximately one quarter of Richter syndrome cases because of deletion of the CDKN2A/CDKN2B locus and inactivating genetic lesions of the CDKN1A regulator TP53, we introduced these defects by CRISPR/Cas9 in autoreactive murine Eμ-TCL1 leukemia cells and investigated the effects on leukemia behavior. Adoptive transfer experiments showed that combined targeting of TP53, CDKN2A and CDKN2B results in accelerated leukemia growth and morphological changes consistent with Richter's transformation, including more diffuse infiltration, larger and more pleomorphic cells, and a higher proliferation rate. Moreover, in vitro experiments showed that cells with combined TP53/CDKN2A/2B deficiency had acquired the capacity for spontaneous proliferation, in contrast to control, TP53- or CDKN2A/2B-targeted cells which died after a couple of weeks in culture. Nucleotide sequencing of the TP53/CDKN2A/2B-targeted cells showed complete disappearance of the wild type alleles, suggesting that biallelic loss of all three genes is required for spontaneous growth in vitro. Combined disruption of TP53, CDKN2A and CDKN2B in two other autoreactive Eμ-TCL1 leukemias yielded the same results. To determine whether the spontaneous in vitro proliferation is dependent on BCR signals, the TP53/CDKN2A/2B-deficient cells were transfected with Cas9 ribonucleoprotein complexes targeting the IgM heavy chain constant region (IGHM) gene or were treated with the BCR inhibitors ibrutinib, idelalisib and fostamatinib. Disruption of the IGHM gene or treatment with a BCR inhibitor resulted in almost complete block of proliferation. In contrast, knockdown of the TLR-adaptor protein MyD88 had no effect. Considering that T cells were not present in the culture conditions, these experiments establish that proliferation of Eμ-TCL1 leukemia cells with biallelic TP53/CDKN2A/2B disruption is BCR-dependent but independent of costimulatory signals. To validate these findings in a human setting, we performed experiments with two recently established Richter syndrome patient-derived xenografts, one with biallelic inactivation/deletion of TP53, CDKN2A and CDKN2B (RS9737), and one with wild type TP53, CDKN2A and CDKN2B (RS1316). BrdU incorporation experiments showed that only RS9737 cells proliferate in vitro following BCR stimulation, whereas both RS9737 and RS1316 cells proliferate following stimulation with CpG + IL-15 or CD40L + IL-4 + IL-21. Finally, we tested the activity of combined treatment with a BCR inhibitor and the CDK4/6 inhibitor palbociclib against the murine and human TP53/CDKN2A/2B-deficient Richter syndrome models. Combined treatment showed synergistic activity in vitro and significantly prolonged mouse survival in vivo compared to single agent treatment (n = 10 mice/group, P<0.001). In conclusion, these data provide evidence that BCR signals are directly involved in regulating CLL cell proliferation and suggest that frequently co-occurring genetic lesions in TP53 and CDKN2A/2B contribute to Richter transformation by allowing for BCR dependent/costimulatory signal independent proliferation, which can be therapeutically targeted with a BCR and CDK4/6 inhibitor combination. Disclosures Deaglio: Verastem: Research Funding; Heidelberg Pharma: Research Funding. Laurenti:Gilead: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AbbVie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees. Efremov:Janssen-Cilag International: Speakers Bureau.


2021 ◽  
Author(s):  
Michael A. Caligiuri ◽  
Jianhua Yu ◽  
Yaping Sun ◽  
Wenjuan Dong ◽  
Lei Tian ◽  
...  

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cancer patients are usually immunocompromised and thus are particularly susceptible to SARS-CoV-2 infection resulting in COVID-19. Although many vaccines against COVID-19 are being preclinically or clinically tested or approved, none have yet been specifically developed for cancer patients or reported as having potential dual functions to prevent COVID-19 and treat cancer. Here, we confirmed that COVID-19 patients with cancer have low levels of antibodies against the spike (S) protein, a viral surface protein mediating the entry of SARS-CoV-2 into host cells, compared with COVID-19 patients without cancer. We developed an oncolytic herpes simplex virus-1 vector-based vaccine named oncolytic virus (OV)-spike. OV-spike induced abundant anti-S protein neutralization antibodies in both tumor-free and tumor-bearing mice, which inhibit infection of VSV-SARS-CoV-2 and wild-type (WT) live SARS-CoV-2 as well as the B.1.1.7 variant in vitro. In the tumor-bearing mice, OV-spike also inhibited tumor growth, leading to better survival in multiple preclinical tumor models than the untreated control. Furthermore, OV-spike induced anti-tumor immune response and SARS-CoV-2-specific T cell response without causing serious adverse events. Thus, OV-spike is a promising vaccine candidate for both preventing COVID-19 and enhancing the anti-tumor response.


2001 ◽  
Vol 194 (8) ◽  
pp. 1043-1052 ◽  
Author(s):  
Phillip D. Holler ◽  
Alice R. Lim ◽  
Bryan K. Cho ◽  
Laurie A. Rund ◽  
David M. Kranz

T cells are activated by binding of the T cell receptor (TCR) to a peptide-major histocompatibility complex (MHC) complex (pMHC) expressed on the surface of antigen presenting cells. Various models have predicted that activation is limited to a narrow window of affinities (or dissociation rates) for the TCR–pMHC interaction and that above or below this window, T cells will fail to undergo activation. However, to date there have not been TCRs with sufficiently high affinities in order to test this hypothesis. In this report we examined the activity of a CD8-negative T cell line transfected with a high affinity mutant TCR (KD = 10 nM) derived from cytotoxic T lymphocyte clone 2C by in vitro engineering. The results show that despite a 300-fold higher affinity and a 45-fold longer off-rate compared with the wild-type TCR, T cells that expressed the mutant TCRs were activated by peptide. In fact, activation could be detected at significantly lower peptide concentrations than with T cells that expressed the wild-type TCR. Furthermore, binding and functional analyses of a panel of peptide variants suggested that pMHC stability could account for apparent discrepancies between TCR affinity and T cell activity observed in several prior studies.


2021 ◽  
Author(s):  
Changzhi Li ◽  
Hongjuan Zhou ◽  
Lingling Guo ◽  
Dehuan Xie ◽  
Huiping He ◽  
...  

The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social and economic stability. In this study, we established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus S protein and its host receptor ACE2. This platform is a rapid, sensitive, specific, and high throughput system. With this platform, we screened two compound libraries of 2,864 molecules and identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S-protein and the human cell ACE2 receptor. This data suggests that TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug.


Sign in / Sign up

Export Citation Format

Share Document