scholarly journals Effect of Normalizing Treatment on Mechanical Properties of AISI 441 Stainless Steel Prepared by Investment Casting

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 474
Author(s):  
Yukun Hu ◽  
Weimin Mao ◽  
Pengyu Yan ◽  
Naiyong Li

In this paper, AISI 441 stainless steel was investigated as a casting steel using the investment casting process (ICP). The microstructure and mechanical properties of the as-cast and normalizing treatment samples were analyzed. The results show that the tensile strength of as-cast AISI 441 prepared by ICP is 458 MPa, and the elongation is 22.7%. Normalizing treatment can improve the mechanical performance of AISI 441 prepared by ICP, but strength and elongation have a slightly decreasing trend with increasing normalizing temperature and time. The suitable normalizing treatment condition is 850 °C for 2 h. It was found that normalizing temperature and time have little effect on grain size and carbonitride. There was an increasing trend in the mean equivalent length (MEL) of the Laves phase as normalizing temperature and time increases. The effect of normalizing treatment on strength increase was mainly related to the change of the Laves phase size.

2018 ◽  
Vol 941 ◽  
pp. 2018-2023
Author(s):  
Paul Royes ◽  
Nicolas Masquelier ◽  
Thierry Breville ◽  
David Balloy

Aluminum-Carbon nanoFibers (CNF) composites produce by stir casting process present a yield strengths (YS) and an ultimate tensile strength (UTS) improved up to 33%. The hardening of the Al-CNF composite was considered as the sum of elementary contributions of effects: natural hardness of pure Al; grain size; dislocation density; elements in solid solution; CNF. In order to quantify CNF effect, calculation was performed to quantify the contribution to yield strength of each other’s mechanisms. This theoretical calculation was compared to experimental results and the real effect of CNF on yield strength increase was estimated between 10 and 16%. Figure SEQ Figure \* ARABIC 1: Graphical Abstract (copper dots on CNF / stir casting process / contributions to hardening) Keywords: Aluminum matrix composite; copper-coated carbon nanofibers; liquid metallurgy elaboration; mechanical properties; hardening effect


2014 ◽  
Vol 887-888 ◽  
pp. 240-247
Author(s):  
Xun Zeng Huang ◽  
Si Yue Chen ◽  
Xin Zhang ◽  
Yi Tao Yang

In this research, influence of annealing process on microstructure and mechanical performance of Nb-Ti-stabilized 430 ferritic stainless steel were investigated. In order to obtain the optimal annealing process, metallographic observation, SEM detection and tensile test were carried out. It is found that the microscopic structure is composed of fine and uniform isometric recrystallization grain after annealing. Optimum microstructure and mechanical properties can be achieved while annealed at 950 °Cfor 90 seconds. The annealed sample can obtain the optimum microstructure and mechanical properties under such annealing process. The yield platform is eliminated and the average plastic strain ratio is further improved to 1.269, which reflected a well deep drawability of the Nb-Ti-stabilized 430 ferritic stainless steel compared to SUS 430 stainless steel.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 494 ◽  
Author(s):  
Recep Gümrük ◽  
Altuğ UŞUN ◽  
Robert Mines

The use of nickel electroless plating to enhance the mechanical properties of stainless steel micro lattice structures manufactured using selective laser melting is described. A coating thickness of 17 μm is achieved, and this increases micro lattice specific stiffness by 75% and specific strength by 50%. There is scope for improving the coating process, and hence improving micro lattice mechanical performance. The methodology described here provides a new potential for optimizing micro lattice mechanical performance and can be extended to other cellular materials with different coating technology.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1693
Author(s):  
Robin Emmrich ◽  
Ulrich Krupp

The present study aims at the development of precipitation hardening fully ferritic steels with increased aluminum and niobium content for application at elevated temperatures. The first and second material batch were alloyed with tungsten or molybdenum, respectively. To analyze the influence of these elements on the thermally induced precipitation of the intermetallic Fe2Nb Laves phase and thus on the mechanical properties, aging treatments with varying temperature and holding time are performed followed by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) including elemental contrast based particle analysis as well as hardness measurements and tensile tests at room temperature and at 500 °C. The incorporation of molybdenum into the Laves phase sets in at an earlier stage of aging than the incorporation of tungsten, which leads to faster growth and coarsening of the Laves phase in the molybdenum-alloyed steel. Nevertheless, both concepts show a fast and massive increase in hardness (280 HV10) due to precipitation of Laves phase during aging at 650 °C. After 4 h aging, the yield strength increase at room temperature is 100 MPa, which stays stable at operation temperatures up to 500 °C.


2018 ◽  
Vol 188 ◽  
pp. 01023
Author(s):  
Ana Kračun ◽  
Franc Tehnovnik ◽  
Fevzi Kafexhiu ◽  
Tadeja Kosec ◽  
Darja Jenko ◽  
...  

The aim of the study was to assess the influence of adding Al2O3 nano-particles of 0.5 wt. % with the mean particle size of 500 nm on the mechanical properties and wear behaviour of the austenitic stainless steel matrix reinforced with nano-particles produced by conventional ingot casting. The focus was on the methods and possibilities of homogeneous and uniform distribution of the particles within the steel matrix using conventional casting routes. The main drawback of the casting method used is the agglomeration of the particles and poor interface between the particles and the metal matrix. The results show that through a proper insertion method, nano-particles can be successfully introduced into the metal matrix. The Al2O3 nano-particles were successfully incorporated into the steel matrix with no signs of clustering and intermetallic reactions taking place between the nano-particles and the steel matrix. This led to improved mechanical properties as well as the wear behaviour of the stainless steel, achieved by using conventional casting routes.


2013 ◽  
Vol 631-632 ◽  
pp. 676-680
Author(s):  
Lan Ying Wu ◽  
Xiao Lian Xiang ◽  
Long You

In order to obtain cover and pump body of tin bronze Tonghai pump that is dense and good pressure resistance,the casting mold of the cover of Tonghai pump is metal mold. The casting method of Tonghai pump is vacuum counter-pressure casting.The method of casting pump body of Tonghai pump is vacuum investment casting. This research is about reasonable casting process parameters of vacuum counter-pressure casting and vacuum investment casting.Finally qualified castings of cover and pump body of Tonghai pump can be obtained.


2008 ◽  
Vol 587-588 ◽  
pp. 157-161 ◽  
Author(s):  
Teresa P. Duarte ◽  
Rui J.L. Neto ◽  
Rui Félix ◽  
F. Jorge Lino

Companies are continuously under pressure to innovate their products and processes. In Portugal, there are already several examples of enterprises that have chosen research groups, associated to universities, to straighten collaboration seeking the development of new materials and advanced technological processes, to produce components with complex shapes, high surface quality, and others, at low cost, for continuously more demanding applications. Unfortunately, these cases are still a very small number, and many efforts have to be done to enlarge the collaboration university-companies. Ti and other reactive alloys are important groups of metals that are under intense and continuous research and development. For example, the high mechanical properties, low density, osteointegration behavior, corrosion resistance to fluids and tissues of the human body, the ability to be sterilized, and the possibility to obtain complex shapes, makes Ti a very attractive material for medical applications. The investment casting process, using lost wax or lost rapid prototyping models, allows designers a great amount of freedom and capacity to quickly produce castings of high dimensional accuracy and excellent surface quality suitable for different applications. Many of the castings obtained by this process are immediately ready for use, avoiding costly machining operations and joining processes, making the process very attractive to produce precision parts in Ti and other reactive alloys. However, the high reactivity of the Ti raises several compatibility problems with the traditional materials employed on the ceramic shells for casting steels and non ferrous alloys. The fragile surface layer obtained on the interface Ti-ceramic shell, result of the Ti reaction with oxygen and nitrogen of the shell, significantly reduces the mechanical properties of the cast parts, making them useless. The aim of the present work is the study of the interface properties of the Ti-ceramic shell, in order to be able to manufacture ceramic shells of low chemical reactivity for the investment casting process of reactive alloys, namely; titanium alloys, inconel, aluminotitanates, and others. Ceramic shells manufactured with calcium and yttria stabilized zirconia and other non reactive ceramics were employed and the metallic interface characterized in terms of microscopic and microhardness properties.


2019 ◽  
Vol 803 ◽  
pp. 17-21 ◽  
Author(s):  
Thee Chowwanonthapunya ◽  
Chaiyawat Peeratatsuwan

In this study, the structures of Al-5Ti-1B master alloy and its influence on microstructures and mechanical properties of A356 alloy were investigated. The results show that Al-5Ti-1B master alloy consisted of the uniform distribution of lump-like TiB2 and network of TiAl3 on α-Al matrix. The addition of the Al-5Ti-1B master alloy can significantly reduce the grain size of A356 alloy. The mechanical properties of A356 alloy, i.e. ultimate tensile strength, yield strength and elongation were also improved. The use of Al-5Ti-1B master alloy as a grain refiner in the casting process of A356 alloy can effectively enhance the grain refinement and thus improve the mechanical performance of A356 alloy.


2020 ◽  
Vol 996 ◽  
pp. 191-199
Author(s):  
Qing Bao Liu ◽  
Zhi You Hu ◽  
Xiang Jun Liu ◽  
Chang Qiao Yang

In order to alleviate the shortage of global nickel resources, it is imperative to develop low nickel stainless steel. This paper presents a novel approach based on increasing nitrogen and reducing nickel for smelting economical stainless steel. Taking 06Cr19Ni10 stainless steel as the object, the test steels with different nitrogen and nickel content were smelted using vacuum induction furnace (ZG-0.01) under the laboratory conditions, and the effects of alloy content on microstructures, mechanical properties and corrosion properties of the economical stainless steel were investigated. The results show that the microstructure of the tested steel which nitrogen content 0~0.28% and nickel content 5.98~9.63% is still the single austenitic, and the grain size decreases as the nitrogen content increases. Nitrogen deteriorates the impact toughness of the tested steel, and the room temperature impact absorption energy is reduced from 267 J at the nitrogen content of 0 to 228 J at nitrogen content of 0.28%. Rockwell hardness, tensile strength and yield strength increase with the increase of nitrogen content. When the nitrogen content is 0.28%, the optimum mechanical properties of 06Cr19Ni10 steel are obtained. The Rockwell hardness is 95.4 HRB, the tensile strength is 814 MPa, the yield strength is 437 MPa, and the elongation after fracture is 52.5%. The degree of intergranular corrosion of the tested steel is reduced significantly with the increase of nitrogen content, from 0.023 μm to 0.008 μm. The experimental data prove that the composition design concept of increasing nitrogen and reducing nickel is feasible for smelting economical stainless steel.


Sign in / Sign up

Export Citation Format

Share Document