Study on Preparation and Properties of Resource-Saving Nitrogenous Stainless Steel

2020 ◽  
Vol 996 ◽  
pp. 191-199
Author(s):  
Qing Bao Liu ◽  
Zhi You Hu ◽  
Xiang Jun Liu ◽  
Chang Qiao Yang

In order to alleviate the shortage of global nickel resources, it is imperative to develop low nickel stainless steel. This paper presents a novel approach based on increasing nitrogen and reducing nickel for smelting economical stainless steel. Taking 06Cr19Ni10 stainless steel as the object, the test steels with different nitrogen and nickel content were smelted using vacuum induction furnace (ZG-0.01) under the laboratory conditions, and the effects of alloy content on microstructures, mechanical properties and corrosion properties of the economical stainless steel were investigated. The results show that the microstructure of the tested steel which nitrogen content 0~0.28% and nickel content 5.98~9.63% is still the single austenitic, and the grain size decreases as the nitrogen content increases. Nitrogen deteriorates the impact toughness of the tested steel, and the room temperature impact absorption energy is reduced from 267 J at the nitrogen content of 0 to 228 J at nitrogen content of 0.28%. Rockwell hardness, tensile strength and yield strength increase with the increase of nitrogen content. When the nitrogen content is 0.28%, the optimum mechanical properties of 06Cr19Ni10 steel are obtained. The Rockwell hardness is 95.4 HRB, the tensile strength is 814 MPa, the yield strength is 437 MPa, and the elongation after fracture is 52.5%. The degree of intergranular corrosion of the tested steel is reduced significantly with the increase of nitrogen content, from 0.023 μm to 0.008 μm. The experimental data prove that the composition design concept of increasing nitrogen and reducing nickel is feasible for smelting economical stainless steel.

Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li

The test of austenitic stainless steel specimens with strain control mode of pre-strain was carried out. The range of pre-strain is 4%, 5%, 6%, 7%, 8%, 9% and 10% on austenitic stainless steel specimens, then tensile testing of these samples was done and their mechanical properties after pre-strain were gotten. The results show that the pre-strain has little effect on tensile strength, and enhances the yield strength more obviously. According to the experimental data, we get a relational expression of S30408 between the value of yield strength and pre-strain. We can obtain several expressions about different kinds of austenitic stainless steel by this way. It is convenient for designers to get the yield strength of austenitic stainless steel after pre-strain by the value of pre-strain and the above expression.


2019 ◽  
Vol 944 ◽  
pp. 193-198
Author(s):  
Tian Yi Wang ◽  
Ren Bo Song ◽  
Heng Jun Cai ◽  
Jian Wen ◽  
Yang Su

The present study investigated the effect of cold rolling reduction on microstructure and mechanical properties of a 204C2 Cr–Mn austenitic stainless steel which contained 16%Cr, 2%Ni, 9%Mn and 0.083 %C). The 204C2 austenitic stainless steels were cold rolled at multifarious thickness reductions of 10%, 20%, 30%,40% and 50%, which were compared with the solution-treated one. Microstructure of them was investigated by means of optical microscopy, X-ray diffraction technique and scanning electron microscopy. For mechanical properties investigations, hardness and tensile tests were carried out. Results shows that the cold rolling reduction induced the martensitic transformation (γ→α ́) in the structure of the austenitic stainless steel. With the increase of the rolling reduction, the amount of strain-induced martensite increased gradually. Hardness, ultimate tensile strength and yield strength increased with the incremental rolling reduction in 204C2 stainless steels, while the elongation decreased. At the thickness reduction of 50%, the specimen obtained best strength and hardness. Hardness of 204C2 stain steel reached 679HV. Ultimate tensile strength reached 1721 MPa. Yield strength reached 1496 MPa.


2006 ◽  
Vol 324-325 ◽  
pp. 671-674
Author(s):  
Wang Xiang ◽  
Xiao Hua Xue

TiCp/ZA-12 composites have been fabricated by XDTM method and stirring-casting techniques. The tests for mechanical properties reveal that the tensile strength and strength increase with increasing fraction of TiC particles. When the fraction of TiC particles increase up to 10%, the tensile strength and yield strength are 390MPa and 340MPa, respectively and they increase by 11% and 17% than that of matrix respectively. From the analysis of fractography we can see that mixed fracture of cleavage fracture and dimple fracture exists in the TiCp/ZA-12 composites, and fractured particles are not found. Finally the fracture model of composites has been established based on the experimental results.


2014 ◽  
Vol 1061-1062 ◽  
pp. 30-34
Author(s):  
Shui Qing Jiang

Studies of the polypropylene grafted with malefic anhydride PP-g-MAH as compatibilizer to toughening polypropylene PP and PMMA blends. When PP/PMMA fixed ratio of 80/20, the effects of PP-g-MAH content on the blend morphology, mechanical properties and thermal properties. With the increase of PP-g-MAH content, strength and impact strength, tensile strength, PMMA/PP/PP-g-MAH blends were first increased and then decreased, and in the PP-g-MAH for 5 copies and reached the maximum value; while the flexural strength increased. The impact strength of the alloy compared with the alloy without the addition of compatibilizer increased about 30%, the tensile strength, bending strength increase obviously. That PP-g-MAH has effects on the morphology and properties of PMMA/PP/ PP-g-MAH blend system.


Author(s):  
Satyanarayana Kosaraju ◽  
Anil Kalluri ◽  
Swadesh Kumar Singh ◽  
Ahsan ul Haq

Abstract Austenitic Stainless-Steel grade 316L is one among the significant ASS grades which is most commonly used in various industry sectors. It has excellent corrosion resistance in ordinary atmospheric and also in more arduous environments such as salt water and environments where resistance to chloride corrosion is required. Whilst performing well when exposed to relatively high temperatures, this grade of Austenitic Stainless steel also maintains its strength and toughness at sub-zero temperatures, making this an excellent choice for various applications in industries sectors such as Marine, general construction, and water treatment. Therefore, present study focused on evaluating the mechanical properties such as ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of −25 °C from 0 °C to −50 °C and at three orientations (0, 45, 90) degrees to the rolling direction and cross head velocity (3, 5, 7) mm/min were chosen. A total of 27 experiments have been planned based on design of experiments to conduct experiments. A mathematical model for the prediction of ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) was developed using process parameters such as temperature, orientation and cross head velocities. Results have shown that mechanical properties can be predicted with a reasonable accuracy within the range of process parameters considered in this study.


2015 ◽  
Vol 817 ◽  
pp. 257-262 ◽  
Author(s):  
Xiao Long Yang ◽  
Yun Bo Xu ◽  
Xiao Dong Tan ◽  
Yong Mei Yu ◽  
Di Wu

Based on TMCP and UFC technology, the microstructures and mechanical properties of 0.05% C bainitic steel were studied in this paper. The bainite morphology and precipitation within bainite lath were observed by SEM and TEM, and the mechanical properties of bainitic steel were measured by tensile and impact test. The results showed that the yield and tensile strengths of steel were 713 MPa and 891 MPa respectively, and the elongation was 15.8% with impact energy of 95J at the temperature of-20°C as the final cooling temperature in hot rolling of 550°C. For comparison, the steel obtained the yield strength of 725 MPa, tensile strength of 930 MPa and elongation of 18% as the final cooling temperature of 450°C. However, the impact energy of steel was 195J at the temperature of-20°C. While at the same final cooling temperature of 450°C, the fast cooling-holding temperature-fast cooling was applied to experimental steel with a faster cooling rate of 50°C/s, hence the steel acquired the yield strength of 845 MPa, tensile strength of 1037 MPa, and elongation of 15.5% with impact energy of 168J at the temperature of-20°C. The strength and toughness of 0.05%C bainitic steel is related to the bainite morphology and precipitation distribution. Hence, the strength and toughness can be improved by control the different cooling processes for adjusting the content of lath bainite, distribution of granular bainite and precipitation.


2018 ◽  
Vol 37 (7) ◽  
pp. 675-681 ◽  
Author(s):  
Weipo Li ◽  
Zhimin Liang ◽  
Congwei Cai ◽  
Dianlong Wang

AbstractThe tunnel defect formed in friction stir weld would dramatically push the mechanical properties of joints into deterioration. In this study, friction stir welding process was adopted to repair the joints of 7N01 aluminum alloy with tunnel defect. The effects of friction stir repair welding process on the microstructure and mechanical properties were comprehensively investigated. Microstructure of the repaired joints shows that the grain size in nugget zone decreases slightly while the recrystallization in the retreating side of thermo-mechanically affected zone is intensified as the joints are repaired. The microhardness of the repaired joints declined slightly compared with the defective joint. However, the yield strength and tensile strength increase and recover to the values of the joints free of defect. The longitudinal residual stress in weld zone increased remarkably as the repair times increase. Compared with the once repaired joint, yield strength and tensile strength of the twice repaired joint reduced slightly, and the throat thickness also reduced during the repeated repair welding process. Therefore, the times of repair welding applied should be limited actually.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781401985099 ◽  
Author(s):  
H Abdelrahim ◽  
HB Mohamed ◽  
Peiqing La ◽  
Wei Fuma ◽  
Fuling Ma ◽  
...  

304 stainless steels were prepared by aluminothermic reaction method; first steels are annealed at 1000°C and then rolled at 700°C for different deformation. The microstructures evolution and mechanical properties were distinguished in details. It was found that the steel contains nanocrystalline/submicrocrystalline/microcrystalline austenite and submicrocrystalline ferrite. After rolling to a thickness reduction of 30%, 50%, and 70%, the mechanical properties of the rolled steels were substantially increased, as the deformation increased from 30% to 50%, the tensile strength increased from 650 to 1110 MPa, the yield strength increased from 400 to 665 MPa, and the elongation increased from 8% to 8.5%.


2020 ◽  
Vol 991 ◽  
pp. 17-23
Author(s):  
Agung Setyo Darmawan ◽  
Pramuko Ilmu Purboputro ◽  
Agus Yulianto ◽  
Agus Dwi Anggono ◽  
Wijianto ◽  
...  

Nodular cast iron is a type of cast iron with spheroid graphite surrounded by ferrite matrix and / or pearlite. The size of the graphite and its matrix affects the mechanical properties of the cast iron. This research was conducted to investigate the effect of Magnesium composition on strength, stiffness and toughness of nodular cast iron. Magnesium addition is performed by adding FeSiMg alloys. After that, the composition of magnesium was investigated by using spectrometry. Then tensile test was conducted to obtain the yield strength, tensile strength and modulus of elasticity. Further, impact test was performed to determine the impact energy needed to break the material. The result showed an increase of yield strength, tensile strength and stiffness and a decrease of toughness.


Teknik ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 117-122
Author(s):  
Gadang Priyotomo ◽  
I Nyoman Gede Putrayasa Astawa ◽  
Fendy Rokhmanto

J4 series stainless steel (SS) is austenitic alloy steel containing chromium and mangan, which has moderate strength and corrosion resistance. However, austenitic SS alloys generally undergo a sensitization process during heat treatment that decreases metal mechanical properties. The investigation of mechanical properties effect on J4 series SS toward the various temperature of metal was carried out at the temperature range of 600oC – 1050oC. The decrease of tensile strength, yield strength, and hardness are followed by increasing toughness and elongation in an increasing metal temperature up to 1050oC. This behavior of mechanical properties is caused by the transformation of α’-martensite phase to the austenitic phase with increasing heating temperature. On the other side, a significant decrease in toughness, yield strength, and elongation at the temperature of 700oC indicate a sensitization process on J4 stainless steel. The process of sensitization will correspond to the susceptibility of stress corrosion cracking on stainless steel.


Sign in / Sign up

Export Citation Format

Share Document