scholarly journals Failure Mechanism and Strength Prediction Model of T-Joint of Composite Sandwich Structure

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1197
Author(s):  
Yang Liu ◽  
Mingxuan Li ◽  
Xiaofeng Lu ◽  
Xiaolei Zhu

Composite sandwich structures are widely used in many fields. T-joint plays a significant role in the composite sandwich structural connection. In this paper, a type of adhesive T-joint was manufactured and tested under bending and shearing load. According to the experiment, the finite element model was established to reveal the failure process. A strength prediction model was proposed based on the simulation. The results showed that the T-joint’s lower connector and the web’s lower face panel controlled its maximum load-bearing capacity, and the failure mode is the fiber compressive damage. The predicted ultimate bearing capacity of the T-joint showed a good agreement with the simulation, and the maximum relative error was less than 3%.

2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Author(s):  
Ke Ning ◽  
Jianmei Wang ◽  
Dan Xiang ◽  
Dingbang Hou

This paper proposes the theoretical model of a multilayer interference fit and gives out the relational expression between radial interference and friction coefficient. Taking the typical wind turbine's shrink disk of a three-layer interference fit structure as an example, special experimental equipment is developed to test the torque capacity. Based on experimental results and the theoretical model, the mathematical expressions of radial interference and assembly stroke for friction coefficient are obtained by polynomial fitting, and the prediction model of friction coefficient is established. The three-dimensional finite element model of a shrink disk is constructed by applying the friction coefficient prediction model. With the mathematical expressions of radial interference and assembly stroke for the torque capacity, the rules of main dimension parameters and torque capacity are analyzed. The maximum relative error between experiment and simulation is 8.2%, which shows the feasibility of finite element simulation. The results of our study have certain guidance for the prediction of friction coefficient and the manufacture of the multilayer interference fit.


2021 ◽  
Vol 687 (1) ◽  
pp. 012007
Author(s):  
Li Tingke ◽  
Peng Yuanchun ◽  
Li Jiadi ◽  
Dulin ◽  
Lian Xingqin

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Łukasz Święch ◽  
Radosław Kołodziejczyk ◽  
Natalia Stącel

The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


Sign in / Sign up

Export Citation Format

Share Document