scholarly journals The Effect of Solidification Rate on the Microstructure and Mechanical Properties of Pure Magnesium

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1264
Author(s):  
Murtatha M. Jamel ◽  
Hugo Lopez ◽  
Benjamin Schultz ◽  
Wilkistar Otieno

Magnesium, Mg, has been widely investigated due to its promising potential as magnesium alloys for various applications, particularly as biomedical implantation devices among other medical applications. This work investigates the influence of different cooling rates on the strength of pure Mg. The cooling rates were set to cover a low cooling rate LCR (0.035 °C/s) in an insulated furnace, a moderate cooling rate MCR (0.074 °C/s) in uninsulated-ends furnace, and a high cooling rate HCR (13.5 °C/s) in liquid CO2. The casting process was accomplished using a closed system of melting and cooling due to the reactivity-flammability of magnesium in order to minimize processing defects and increase the safety factor. The as-cast samples were metallographically examined for their microstructure, and properties such as impact strength, hardness, and tension were determined. Increasing the solidification rate from 0.035 °C/s to 0.074 °C/s increased the hardness from 30 to 34 Rockwell Hardness and the UTS from 48 to 67 MPa. A higher solidification rate of 13.5 °C/s further enhanced the hardness to 48 Rockwell Hardness and the UTS to 87 MPa in comparison to the 0.074 °C/s cooling rate. Additionally, the fracture behavior and morphology were investigated. It was found that in general, the mechanical properties tended to improve by refining the grain structure.

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 549
Author(s):  
Longfei Li ◽  
Daquan Li ◽  
Jian Feng ◽  
Yongzhong Zhang ◽  
Yonglin Kang

Rare earth (RE) additions are capable of refining the α-Al phase as well as modifying the eutectic Si particles of alloys. The cooling rate in casting process should be carefully concerned when the Al-Si alloys are refined and modified by adding RE elements. In this study, the effect of cooling rates on the microstructure and mechanical properties of La modified Al-7.0Si-0.3Mg alloys was studied in gravity die casting and semi-solid die casting. It is found that in La modified Al-7.0Si-0.3Mg alloys, with increasing the cooling rate from 0.2 to 9 K/s in gravity die casting, the α-Al grains are greatly refined and the Si particles are modified to branching morphology, which evidently increases the UTS and elongation of alloys. In addition, when increasing the cooling rate from 30 to 130 K/s in semi-solid die casting, the α-Al grains are refined from 140 to 47 μm, and the Si particles are modified to fibrous morphology, which increases the UTS from 190 to 230 MPa and elongation from 10% to 11%. However, the 0.4 wt.% La addition results to La-rich phases formed in microstructure, which impairs the mechanical properties of Al-7.0Si-0.3Mg alloys in semi-solid die casting.


2014 ◽  
Vol 217-218 ◽  
pp. 332-339 ◽  
Author(s):  
Xiao Kang Liang ◽  
Da Quan Li ◽  
Pascal Côté ◽  
Stephen P. Midson ◽  
Qiang Zhu

The spheroidal grains in billets used for semi-solid casting are generally manufactured by electromagnetic stirring (EMS) during the casting process. This method however, is not economically applicable for small quantities of the thixo billets. Swirled Enthalpy Equilibration Device (SEED) has been developed as a rheocasting process, and the SEED process is of interest for developing new thixo alloys, as well as for optimizing the thixocasting processes for high quality components. The objective of this paper is to compare the microstructure and mechanical properties of aluminum alloy 319s billets and castings produced using EMS and SEED feed materials. The experimental results show that for as-cast billets made from SEED process, a well-developed spheroidal grain structure is distributed throughout the cross-section of the billet, while for as-cast EMS billets, the grain structure is inhomogeneous, i.e., a dendritic structure was present adjacent to the surface of the billet, while a uniform, spheroidal structure was present at the centre. After the thixocasting process, however, the both SEED and EMS billets have well-developed, spheroidal grain structures. Mechanical properties of thixocast and T61 heat treated components are comparable for the both SEED and EMS billets.


2016 ◽  
Vol 850 ◽  
pp. 502-510
Author(s):  
Hai Jun Liu ◽  
Lie Jun Li ◽  
Jian Wei Niu ◽  
Ji Xiang Gao ◽  
Xue Wen Chen

The effect of local pressurization on mechanical properties and fracture behavior of indirect squeeze-cast A354 alloy has been investigated. As compared to conventional process, the porosity and shrinkage cavity for heavy sectioned squeeze castings were improved by the indirect squeeze casting, while its tensile properties were inferior to other parts of the casting. That is mainly due to that inhomogeneous eutectic Si particles within strip, angular and fragment shapes distribute in bulky α-Al cells, which is caused by slower solidification rate. After T6 treatment, the fragmentation and spheroidization of the eutectic silicon happened. Under this situation, the effect of fragmentation on α-Al matrix reduced. Tensile properties of the casting (both local pressurization part and non-local pressurization part) were enhanced greatly, by 36.8% and 25.4%, respectively. Fracture analysis results show that the type of fracture morphology is changed from mixed mode of brittle cleavage and ductile to ductile mode after T6-treatment.


Author(s):  
P. Kordas

Purpose: Assessment of the possibilities of shaping the structure and improvement of mechanical properties of casting from AlMg10 alloy through a selection of casting technology and precipitation hardening. Design/methodology/approach: the work evaluated the impact of casting and heat treatment technology on the mechanical properties and structure of AlMg10 alloy castings. The tests were performed on 200 mm × 100 mm × 25 mm plate castings produced by gravity casting methods for sand and metal moulds and by a liquid state press moulding technology. Castings made with these technologies solidify in substantially different heat- evaporation conditions and exhibit varying degrees of primary structure fragmentation. Metallographic and strength tests were performed on raw castings and after heat treatment. Findings: The changes in the morphology and size of primary crystals and the dispersion of the reinforcing phase according to the casting solidification rate and the precipitation hardening treatment were analyzed. Solidifying castings in the form of sand show a globular structure, whereas in die and press castings, a typically dendritic structure occurs, with the dendritic crystals in pressed castings being much smaller in size than the die castings. In castings which were not heat-treated, the reinforcing phase of Al3Mg2 occurs in interdendritic spaces, and its dispersion increases with the rate of cooling. After supersaturation and ageing treatments, the phase α has a grain structure in all samples. The largest dispersion of reinforcing molecules is characterized by press castings. In a raw state, the highest mechanical properties are shown by castings made in the form of sand and the method of pressing in a liquid state. Heat treatment of AlMg10 alloy castings significantly influences the increase of mechanical indexes in all castings investigated. The highest features of Rm are approx. 330 MPa and A5 above 10% is obtained in castings made by the press method. Research limitations/implications: Particular attention should be paid to the avoidance of the effects of slag inclusion, shrinkage and magnesium oxidation during casting of AlMg10 alloys. In die castings of a plate type, due to own stresses, a significant decrease in mechanical properties occurs. Practical implications: The most advantageous mechanical properties of AlMg10 alloy castings are obtained by using liquid-state pressing technology. In addition, this technology makes it possible to produce thin-walled castings of high dimensional accuracy, high air- tightness, fine grain structure, lack of surface defects and low roughness. Originality/value: The paper presents the possibility of improving the mechanical properties of AlMg10 castings by applying heat treatment. It has been proven that the casting method has a significant effect on the mechanical properties of the castings.


2021 ◽  
Vol 5 (9) ◽  
pp. 248
Author(s):  
Nikita Pyatov ◽  
Harish Karthi Natarajan ◽  
Tim A. Osswald

In order to meet environmental regulations and achieve resource efficiency in the series production of vehicles, recyclable polymer composites with a high strength-to-weight ratio are increasingly being used as materials for structural components. Particularly with thermoplastic fibre-reinforced polymers or organo-sheets, the advantage lies in the tailored mechanical properties of the final component by adapting the orientation of fibres based on the direction of loads. These components produced by thermoforming organo-sheets also offer a cost benefit and short cycle times. During the thermoforming process, the shear behaviour of the organo-sheet is the most dominant and determines the mechanical properties and quality of the resulting component. However, the current standard for characterising the shear behaviour of organo-sheets does not consider the strain and cooling rates inherent in the thermoforming process. This research investigates the influence of thermoforming process parameters on the shear behaviour of organo-sheets with a new methodology combining DSC and DMA experiments. During the thermoforming process, the transition of the matrix material from a molten state to a solid state is dictated by the crystallisation kinetics and their dependence on heating and cooling rates. Thus, non-isothermal DSC scans, which correspond to a temperature cycle in a thermoforming process, are used in the DSC experiments to establish the relationship between the recrystallisation temperature of the organo-sheet material and the cooling/heating rates in the thermoforming process. In order to achieve thermoforming-process-relevant cooling rates, fast scanning calorimetry (Flash DSC) is used in addition to conventional DSC measurements. DMA experiments carried out with 45° fibre orientation show that the recrystallisation temperature consequently influences the shear storage modulus of the organo-sheet. The results from DSC measurements show a shift of recrystallisation temperatures to lower temperatures as the cooling rate increases. The combined analysis of results from the DSC and DMA experiments supports the findings and shows the influence of the process temperature, cooling rate and strain rate on the recrystallisation temperature and, in turn, the shear behaviour of organo-sheets. Thus, a recommendation for establishing a new standard for characterising the shear behaviour of organo-sheets is made.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2056
Author(s):  
Evgenii Aryshenskii ◽  
Maksim Lapshov ◽  
Sergey Konovalov ◽  
Jurgen Hirsch ◽  
Vladimir Aryshenskii ◽  
...  

The study investigates the effect of casting speed on the solidification microstructure of the aluminum alloy Al0.3Mg1Si with and without the additions of zirconium and scandium. Casting was carried out in steel, copper, and water-cooled chill molds with a crystallization rate of 20 °C/s, 10 °C/s, and 30 °C/s, respectively. For each casting mode, the grain structure was investigated by optical microscopy and the intermetallic particles were investigated by scanning and transmission microscopy; in addition, measurements of the microhardness and the electrical conductivity were carried out. An increase in the solidification rate promotes grain refinement in both alloys. At the same time, the ingot cooling rate differently affects the number of intermetallic particles. In an alloy without scandium–zirconium additives, an increase in the ingot cooling rate leads to a decrease in the number of dispersoids due to an increase in the solubility of the alloying elements in a supersaturated solid solution. With the addition of scandium and zirconium, the amount of dispersoids increases slightly. This is because increasing the solubility of the alloying elements in a supersaturated solid solution is leveled by a growth of the number of grain boundaries, promoting the formation of particles of the (AlSi)3ScZr type, including those of the L12 type. In addition, the increase in the crystallization rate increases the number of primary nonequilibrium intermetallic particles which have a eutectic nature.


2018 ◽  
Vol 913 ◽  
pp. 311-316
Author(s):  
Kai Zhang ◽  
Ren Bo Song ◽  
Feng Gao ◽  
Wen Jie Niu ◽  
Chi Chen

The effect of different fast cooling rates on the microstructure and mechanical properties of the V and Ti microalloyed high strength cold-rolled sheet was studied under laboratory conditions. Five different fast cooling rates were set up as 20°C/s, 50°C/s, 200°C/s, 500°C/s and 1000°C/s, respectively. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the microstructure, and the mechanical properties were also tested. The results showed that with the increase of fast cooling rate from 20°C/s to 1000°C/s, the grains of martensite and ferrite were finer, and the average grain size of both martensite and ferrite decreased from 7.7μm to 3.9μm. The proportion of ferrite in the two phases decreased while that of the martensite increased from 25.7% to 62.1%. The morphology of martensite tended to be lath, and the density of dislocation in the ferrite grains nearby the martensite gradually increased. With cooling rate rising from 20°C/s to 1000°C/s, the yield strength of the experimental steel increased from 381MPa to 1074MPa, and the tensile strength increased from 887MPa to 1199MPa. And the elongation decreased from 14.2% to 7.2%, and the product of strength and elongation decreased from 12.6GPa·% to 8.6GPa·%.


2013 ◽  
Vol 872 ◽  
pp. 89-93 ◽  
Author(s):  
Nikita Martyushev ◽  
Ilya V. Semenkov ◽  
Yuriy N. Petrenko

The influence of crystallization conditions of leaded tin bronze on the obtained microstructure parameters is examined in the paper. Modification of crystallization conditions was realised by varying the cooling rate of the melt with preheating of the casting molds. Quantitative regularities of the influence of the cooling rate of bronze on its phase composition are presented. Data on mechanical properties of the material under investigation are also reported in the paper. It is demonstrated that high cooling rates (casting into mold at ambient temperature) enable obtaining higher mechanical properties in comparison with low cooling rates (casting into mold heated up to 800 °С).


2006 ◽  
Vol 519-521 ◽  
pp. 537-542
Author(s):  
Supparerk Boontein ◽  
Wattanachai Prukkanon ◽  
Kongkiat Puparatanapong ◽  
Julathep Kajornchaiyakul ◽  
Chaowalit Limmaneevichitr

A356 is the aluminum casting grade which has compositions that combines outstanding casting characteristics with excellent properties after heat treatment. Mechanical properties of A356 can be improved by reducing of secondary dendrite arm spacing (SDAS), precipitation hardening, and the interaction effect of both. It is generally accepted that dendrite arm spacing and fine distribution microstructure are related to each other and they also affect the precipitation hardening in a way that smaller SDAS results in shorter time required to obtain a satisfactory degree of solution of the undissolved or precipitated soluble phase constituents and to achieve good homogeneity. Minor addition of Sb was successfully used in reducing the SDAS in previous work. However, the effect of Sb addition on age hardening has not been investigated, especially in a high cooling rate condition. In this research, effects of minor addition of Sb on SDAS, age hardening and mechanical properties; i.e. hardness and tensile properties, are reported. It was found that Sb addition did not clearly affect SDAS at the high cooling rate, i.e. as in permanent mold casting process. Moreover, we found that the addition of Sb into A356 also lowered mechanical properties.


2020 ◽  
pp. 17-20
Author(s):  
N. I. Gabelchenko ◽  
A. A. Belov ◽  
N. A. Kidalov ◽  
A. I. Gabelchenko

The work is devoted to improvement of mechanical properties of iron castings via adjusting of the cooling rate without introduction of alloying additives. The new technological solution is suggested; it can be easily adapted to a casting technology. This solution is based on variation of the cooling rate of iron castings within structurally sensitive solidification intervals. For this purpose, the casting mould was initially cooled after pouring, then heated and cooled again. Cooling of the mould during the period of primary austenite crystal forming led to increase of dendrite crystallization rate and was executed using compressed air. Retarding of the cooling rate during the period of eutectic transformation was provided by the mould heating via burning of exothermic carbon-containing additives introduced in a facing layer of sand-clay moulding mix. Burning reaction is accompanied by heat extraction, what steeply retarded the cooling rate within the interval of eutectic transformation. Consequent acceleration of castings cooling within the interval of eutectoid transformation was achieved via repeated air blowing through a worked reaction layer. Adjusted cooling of iron castings allowed to provide the most favourable solidification conditions, taking into account strictly individual requirements for each structurally sensitive temperature intervals. It led to increase of a volumetric part of primary austenite dendrite crystals, to decrease of eutectic transformation overcooling degree, to forming of graphite eutectics and enlargement of dispersity of pearlite component in iron. Consequently, lowering of widespread iron castings rejects takes place, among them chilling, with simultaneous improvement of metal mechanical properties. As a result, the primary and real structures were varied, what had a positive effect on mechanical properties of casting metal. It is shown that use of solidification rate adjustment led to essential increase of metal tensile strength for the experimental casting.


Sign in / Sign up

Export Citation Format

Share Document