Influence of the conditions of casting and heat treatment on the structure and mechanical properties of the AlMg10 alloy

Author(s):  
P. Kordas

Purpose: Assessment of the possibilities of shaping the structure and improvement of mechanical properties of casting from AlMg10 alloy through a selection of casting technology and precipitation hardening. Design/methodology/approach: the work evaluated the impact of casting and heat treatment technology on the mechanical properties and structure of AlMg10 alloy castings. The tests were performed on 200 mm × 100 mm × 25 mm plate castings produced by gravity casting methods for sand and metal moulds and by a liquid state press moulding technology. Castings made with these technologies solidify in substantially different heat- evaporation conditions and exhibit varying degrees of primary structure fragmentation. Metallographic and strength tests were performed on raw castings and after heat treatment. Findings: The changes in the morphology and size of primary crystals and the dispersion of the reinforcing phase according to the casting solidification rate and the precipitation hardening treatment were analyzed. Solidifying castings in the form of sand show a globular structure, whereas in die and press castings, a typically dendritic structure occurs, with the dendritic crystals in pressed castings being much smaller in size than the die castings. In castings which were not heat-treated, the reinforcing phase of Al3Mg2 occurs in interdendritic spaces, and its dispersion increases with the rate of cooling. After supersaturation and ageing treatments, the phase α has a grain structure in all samples. The largest dispersion of reinforcing molecules is characterized by press castings. In a raw state, the highest mechanical properties are shown by castings made in the form of sand and the method of pressing in a liquid state. Heat treatment of AlMg10 alloy castings significantly influences the increase of mechanical indexes in all castings investigated. The highest features of Rm are approx. 330 MPa and A5 above 10% is obtained in castings made by the press method. Research limitations/implications: Particular attention should be paid to the avoidance of the effects of slag inclusion, shrinkage and magnesium oxidation during casting of AlMg10 alloys. In die castings of a plate type, due to own stresses, a significant decrease in mechanical properties occurs. Practical implications: The most advantageous mechanical properties of AlMg10 alloy castings are obtained by using liquid-state pressing technology. In addition, this technology makes it possible to produce thin-walled castings of high dimensional accuracy, high air- tightness, fine grain structure, lack of surface defects and low roughness. Originality/value: The paper presents the possibility of improving the mechanical properties of AlMg10 castings by applying heat treatment. It has been proven that the casting method has a significant effect on the mechanical properties of the castings.

2014 ◽  
Vol 794-796 ◽  
pp. 821-826 ◽  
Author(s):  
Jian Qin ◽  
Zhan Zhang ◽  
X. Grant Chen

Scandium has been introduced into the Al-B4C composite to form Al3Sc precipitates which offer a significant strengthening effect and a good thermal stability of the mechanical properties at elevated temperatures. In the present study, the grain structure and Al3Sc precipitation of the hot-rolled Al-15vol.% B4C composite containing Sc were examined by optical and electron microscopes. The mechanical properties of the hot deformed composite were evaluated by means of Vickers microhardness measurements. The post heat treatment after hot rolling was conducted to obtain desirable mechanical properties. The hot-rolled Al-B4C composite containing Sc can yield a considerable precipitation hardening under an appropriate post heat treatment. Results show that some Sc could be consumed during high temperature solution treatments, which remarkably reduced the precipitation hardening of Al3Sc precipitates. The amount of Sc loss is associated with the deformation ratio and solution time.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


Author(s):  
G.V. Shlyakhova ◽  
◽  
A.V. Bochkareva ◽  
M.V. Nadezhkin ◽  
◽  
...  

This study presents experimental results of structural analysis, such as phase composition, grains size assessment, strength and hardness of Ni-SPAN-C alloy 902 after various heat treatment modes (hardening and aging for stress relaxation). A thermal treatment mode has been selected to obtain higher physical and mechanical properties of the elinvar alloy. It is shown that the improvement of the alloy structure in thermal treatment occurs due to the thermic stresses, as well as the formation and dissolution of intermetallides.


2020 ◽  
Vol 405 ◽  
pp. 133-138
Author(s):  
Ludmila Kučerová ◽  
Andrea Jandová ◽  
Ivana Zetková

Maraging steel is an iron-nickel steel alloy, which achieves very good material properties like high toughness, hardness, good weldability, high strength and dimensional stability during heat treatment. In this work, maraging steel 18Ni-300 was manufactured by selective laser melting. It is a method of additive manufacturing (AM) technology, which produces prototypes and functional parts. Sample of additively manufactured and conventional steel with the same chemical composition were tested after in three different states – heat treated (as-built/as-received), solution annealed and precipitation hardened. Resulting microstructures were analysed by light and scanning electron microscopy and mechanical properties were obtained by hardness measurement and tensile test. Cellular martensitic microstructures were observed in additively manufactured samples and conventional maraging steel consisted of lath martensitic microstructures. Very similar mechanical properties were obtained for both steels after the application of the same heat treatment. Ultimate tensile strengths reached 839 – 900 MPa for samples without heat treatment and heat treated by solution annealing, the samples after precipitation hardening had tensile strengths of 1577 – 1711 MPa.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1607
Author(s):  
Amir Hossein Baghdadi ◽  
Zainuddin Sajuri ◽  
Mohd Zaidi Omar ◽  
Armin Rajabi

Friction stir welding (FSW) is an alternative method to join aluminum (Al) alloys in a solid-state condition. However, the coarsening or dissolution of precipitation hardening phases in the welding zone causes strength reduction or softening behavior in the welded area of age-hardened Al alloys. Therefore, this research aimed to improve the mechanical properties of an FSW Al–Mg–Si alloy via post-weld heat treatment (PWHT) and the possibility of controlling the abnormal grain growth (AGG) using different welding parameters. FSW was performed with different rotational and travel speeds, and T6 heat treatment was carried out on the FSW samples as the PWHT. The results showed a decrease in the strength of the FSW samples compared with that of the base material (BM) due to the dissolution of precipitation hardening particles in the heat-affected zone. However, the emergence of AGG in the microstructure after the T6-PWHT was identified as the potential event in the microstructure of the PWHT samples. It is found that the AGG of the microstructure in similar joints of Al6061(T6) was governed by the welding parameters. The results proved that PWHT was able to increase the tensile properties of the welded samples to values comparable to that of Al6061(T6)-BM. The increased mechanical properties of the FSW joints were attributed to a proper PWHT that resulted in a homogeneous distribution of the precipitation hardening phases in the welding zones.


2014 ◽  
Vol 217-218 ◽  
pp. 332-339 ◽  
Author(s):  
Xiao Kang Liang ◽  
Da Quan Li ◽  
Pascal Côté ◽  
Stephen P. Midson ◽  
Qiang Zhu

The spheroidal grains in billets used for semi-solid casting are generally manufactured by electromagnetic stirring (EMS) during the casting process. This method however, is not economically applicable for small quantities of the thixo billets. Swirled Enthalpy Equilibration Device (SEED) has been developed as a rheocasting process, and the SEED process is of interest for developing new thixo alloys, as well as for optimizing the thixocasting processes for high quality components. The objective of this paper is to compare the microstructure and mechanical properties of aluminum alloy 319s billets and castings produced using EMS and SEED feed materials. The experimental results show that for as-cast billets made from SEED process, a well-developed spheroidal grain structure is distributed throughout the cross-section of the billet, while for as-cast EMS billets, the grain structure is inhomogeneous, i.e., a dendritic structure was present adjacent to the surface of the billet, while a uniform, spheroidal structure was present at the centre. After the thixocasting process, however, the both SEED and EMS billets have well-developed, spheroidal grain structures. Mechanical properties of thixocast and T61 heat treated components are comparable for the both SEED and EMS billets.


2013 ◽  
Vol 13 (3) ◽  
pp. 68-71
Author(s):  
J. Piątkowski ◽  
M. Jabłońska

Abstract The paper presents the results of studies on the effect of the AlSi17Cu5 alloy overheating to atemperature of 920°C and modification with phosphorus (CuP10) on the resultingmechanical (HB, Rm, R0.2) and plastic (A5 and Z) properties. It has been shown that, so-called, "timethermal treatment" (TTT) of an alloy in the liquid state, consisting inoverheating the metal to about 250°C above Tliq,holding at this temperature by 30 minutes improvesthe mechanical properties. It has also been found that overheating of alloy above Tliq.enhances the process of modification, resulting in the formation of fine-grain structure. The primary silicon crystals uniformly distributed in the eutectic and characteristics ofthe α(Al) solution supersaturated with alloying elements present in the starting alloy composition (Cu, Fe) provide not only an increase of strength at ambient temperature but also at elevated temperature (250°C).


Sign in / Sign up

Export Citation Format

Share Document