scholarly journals Evolution of Microstructure and Elements Distribution of Powder Metallurgy Borated Stainless Steel during Hot Isostatic Pressing

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Yanbin Pei ◽  
Xuanhui Qu ◽  
Qilu Ge ◽  
Tiejun Wang

prepared by powder metallurgy process incorporating atomization and hot isostatic pressing (HIP) sintering at six different temperatures from 600 to 1160 °C, borated stainless steel (BSS) containing boron content of 1.86 wt% was studied. The phase of BSS, relative density of different temperature, microstructure, elemental distribution, and mechanical properties were tested and analyzed. The phases of the alloy were calculated by the Thermo-Calc (2021a, Thermo-Calc Software, Solna, Sweden) and studied by quantitative X-ray diffraction phase analysis. The distributions of boron, chromium, and iron in grains of the alloy were analyzed by scanning electron microscopy and transmission electron microscope. The grain size distributions and average grain sizes were calculated for the boron-containing phases at 900, 1000, 1100, and 1160 °C, as well as the average grain size of the austenite phase at 700 and 1160 °C. After undergoing HIP sintering at 900, 1000, 1100, and 1160 °C, respectively, the tensile strength and ductility of the alloy were tested, and the fracture surfaces were analyzed. It was found that the alloy consisted of two phases (austenite and boron-containing phase) when HIP sintering temperature was higher than 900 °C, and the relative density of the prepared alloys was higher than 99% when HIP temperature was higher than 1000 °C. According to the boron-containing phase grain size distribution and microstructure analysis, the boron-containing phase precipitated both inside the austenite matrix and at the grain boundaries and its growth mechanism was divided into four steps. The tensile strength and elongation of alloy were up to 776 MPa and 19% respectively when the HIP sintering was at 1000 °C.

2014 ◽  
Vol 552 ◽  
pp. 274-277 ◽  
Author(s):  
Rui Peng Guo ◽  
Lei Xu ◽  
Jia Feng Lei ◽  
Rui Yang

Ti-6Al-4V alloys of various densities were prepared by powder metallurgy (PM) using hot isostatic pressing (HIPing). The effects of porosity on mechanical properties of PM compacts have been investigated. It indicated that PM Ti-6Al-4V alloy exhibited a better performance by increase of relative density, especially for the tensile strength at 400 oC. Re-HIPing was used to assess the possibility for increasing the relative density of PM compacts with porosity defects in the first HIPing cycles. The results show that re-HIPing is an effective technique to heal porosity defects. The relative density of PM compacts with porosity can be significantly improved by re-HIPing.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7110
Author(s):  
Yanbin Pei ◽  
Xuanhui Qu ◽  
Qilu Ge ◽  
Tiejun Wang

Borated stainless steel (BSS) specimens have a boron content of 1.86 wt%, and are prepared by hot isostatic pressing (HIP) conducted at different temperatures, ranging from 1000 to 1100 °C and a constant true strain rate (0.01, 0.1, 1 and 10 s−1). These tests, with observations and microstructural analysis, have achieved the hot deformation characteristics and mechanisms of BSS. In this research, the activation energy (Q) and Zener–Hollomon parameter (Z) were contrasted against the flow curves: Q = 442.35 kJ/mol. The critical conditions associated with the initiation of dynamic recrystallization (DRX) for BSS were precisely calculated based on the function between the strain hardening rate with the flow stress: at different temperatures from 1000 to 1100 °C: the critical stresses were 146.69–254.77 MPa and the critical strains were 0.022–0.044. The facts show that the boron-containing phase of BSS prevented the onset of DRX, despite the saturated boron in the austenite initiated DRX. The microstructural analysis showed that hot deformation promoted the generation of borides, which differed from the initial microstructure of HIP. The inhomogeneous distribution of elements in the boron-containing phase was caused by hot compression.


2014 ◽  
Vol 622-623 ◽  
pp. 833-839 ◽  
Author(s):  
Qian Bai ◽  
Jian Guo Lin ◽  
Gao Feng Tian ◽  
Daniel S. Balint ◽  
Jin Wen Zou

Powder metallurgy (PM) of nickel-based superalloys has been used for a wide range of products owing to their excellent special properties in processing and applications. Typical processes for high performance PM superalloys include hot isostatic pressing, hot extrusion and hot isothermal forging. Hot isostatic pressing is normally conducted at a high temperature, by using a low pressure for a long time in a closed vessel, resulting in high cost and low product efficiency. In this paper a novel forming process, i.e. direct powder forging for powder metallurgy of superalloys has been proposed. In this process, the encapsulated and vacuumed powder is heated up to the forming temperature and forged directly to the final shape, by using a high forming load for a very short time. Direct powder forging is a low-cost and energy-saving process compared to conventional PM processes, and in addition, press machines of conventional forging can be used for direct powder forming process. In direct powder forging it is important to control the relative density of the deformed part since the existence of voids could reduce the mechanical strength and fatigue life. In this paper, feasibility tests of direct powder forging are presented. Microstructure, relative density and hardness of the formed specimen were studied.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3416
Author(s):  
Eliza Romanczuk ◽  
Krzysztof Perkowski ◽  
Zbigniew Oksiuta

An influence of the powder metallurgy route on the phase structure, mechanical properties, and corrosion resistance of Fe–18%Cr–12%Mn–N nickel-free austenitic stainless steel as a potential material for medical applications were studied. The powder was mechanically alloyed in a high purity nitrogen atmosphere for 90 h followed by Hot Isostatic Pressing at 1150 °C (1423 K) and heat treatment at 1175 °C (1423 K) for 1 h in a vacuum with furnace cooling and water quenching. More than 96% of theoretical density was obtained for the samples after Hot Isostatic Pressing that had a direct influence on the tensile strength of the tested samples (Ultimate Tensile Strength is 935 MPa) with the total elongation of 0.5%. Heat treatment did not affect the tensile strength of the tested material, however, an elongation was improved by up to 3.5%. Corrosion properties of the tested austenitic stainless steel in various stages of the manufacturing process were evaluated applying the anodic polarization measurements and compared with the austenitic 316LV stainless steel. In general, the heat treatment applied after Hot Isostatic Pressing improved the corrosion resistance. The Hot Isostatic Pressing sample shows dissolution, while heat treatment causes a passivity range, the noblest corrosion potential, and lower current density of this sample.


2011 ◽  
Vol 675-677 ◽  
pp. 853-856 ◽  
Author(s):  
Zhi Gang Wang ◽  
Yu Sheng Shi ◽  
Rui Di Li ◽  
Qing Song Wei ◽  
Jin Hui Liu

Selective laser melting (SLMing) is a new advanced material processing technology which is used in fabricating parts with complex shape. Hot isostatic pressing (HIPing) is a manufacture technology which forms parts by imposing high heat and pressure on metal powders or semi-manufactured parts. Considering the advantages of both the technologies, they can be combined to produce higher-quality parts free from the limitation of the shape of parts. AISI316L stainless steel is widely used in manufacturing varies of complex metal parts. In this research, three AISI316L stainless steel samples with different relative densities were acquired by controlling the fabricating parameters in SLM. The SEM and optical microscopy analysis were employed to characterize the relative density, microstructure, deformation by comparing the differences between SLM samples and SLM-HIPped samples. In addition, the influence of HIP process on microstructures of samples in different laser fabricating parameters was investigated by analyzing the mechanisms of SLM and HIP. The results show that HIP can close vacuum crack and pore, consequently, the relative density of SLM samples increases after HIP, making the property of the samples improved and microstructure better-distributed. Moreover, the increment of relative density under the same HIP condition is also discussed.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4646
Author(s):  
Yanbin Pei ◽  
Xuanhui Qu ◽  
Qilu Ge ◽  
Tiejun Wang

Borated stainless steel (BSS) with a boron content of 1.86% was prepared by a powder metallurgy process incorporating atomization and hot isostatic pressing. After solution quenching at 900–1200 °C, the phase composition of the alloy was studied by quantitative X-ray diffraction phase analysis. The microstructure, fracture morphology, and distributions of boron, chromium, and iron in grains of the alloy were analyzed by field-emission scanning electron microscopy with secondary electron and energy-dispersive spectroscopy. After the coupons were heat treated at different temperatures ranging from 900 to 1200 °C, the strength and plasticity were tested, and the fracture surfaces were analyzed. Undergoing heat treatment at different temperatures, the phases of the alloy were austenite and Fe1.1Cr0.9B0.9 phase. Since the diffusion coefficients of Cr, Fe, and B varied at different temperatures, the distribution of elements in the alloy was not uniform. The alloy with good strength and plasticity can be obtained when the heat treatment temperature of alloy ranged from 1000 to 1150 °C while the tensile strength was about 800 MPa, with the elongation standing about 20%.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1027
Author(s):  
Joan Lario ◽  
Ángel Vicente ◽  
Vicente Amigó

The HIP post-processing step is required for developing next generation of advanced powder metallurgy titanium alloys for orthopedic and dental applications. The influence of the hot isostatic pressing (HIP) post-processing step on structural and phase changes, porosity healing, and mechanical strength in a powder metallurgy Ti35Nb2Sn alloy was studied. Powders were pressed at room temperature at 750 MPa, and then sintered at 1350 °C in a vacuum for 3 h. The standard HIP process at 1200 °C and 150 MPa for 3 h was performed to study its effect on a Ti35Nb2Sn powder metallurgy alloy. The influence of the HIP process and cold rate on the density, microstructure, quantity of interstitial elements, mechanical strength, and Young’s modulus was investigated. HIP post-processing for 2 h at 1200 °C and 150 MPa led to greater porosity reduction and a marked retention of the β phase at room temperature. The slow cooling rate during the HIP process affected phase stability, with a large amount of α”-phase precipitate, which decreased the titanium alloy’s yield strength.


Sign in / Sign up

Export Citation Format

Share Document