scholarly journals Experimental Study on the Lubrication and Cooling Effect of Graphene in Base Oil for Si3N4/Si3N4 Sliding Pairs

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 160
Author(s):  
Lixiu Zhang ◽  
Xiaoyi Wei ◽  
Junhai Wang ◽  
Yuhou Wu ◽  
Dong An ◽  
...  

Recently, the engineering structural ceramics as friction and wear components in manufacturing technology and devices have attracted much attention due to their high strength and corrosion resistance. In this study, the tribological properties of Si3N4/Si3N4 sliding pairs were investigated by adding few-layer graphene to base lubricating oil on the lubrication and cooling under different experimental conditions. Test results showed that lubrication and cooling performance was obviously improved with the addition of graphene at high rotational speeds and low loads. For oil containing 0.1 wt% graphene at a rotational speed of 3000 r·min−1 and 40 N loads, the average friction coefficient was reduced by 76.33%. The cooling effect on Si3N4/Si3N4 sliding pairs, however, was optimal at low rotational speeds and high loads. For oil containing 0.05 wt% graphene at a lower rotational speed of 500 r·min−1 and a higher load of 140 N, the temperature rise was reduced by 19.76%. In addition, the wear mark depth would decrease when adding appropriate graphene. The mechanism behind the reduction in friction and anti-wear properties was related to the formation of a lubricating protective film.

2019 ◽  
Vol 10 (1) ◽  
pp. 115 ◽  
Author(s):  
Na Wu ◽  
Ningning Hu ◽  
Jinhe Wu ◽  
Gongbo Zhou

The microscale/nanoscale lamellar-structure WS2 particles with sizes of 2 µm and 500 nm were synthesized by solid-phase reaction method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The synergies between microscale/nanoscale WS2 particles and ZDDP as lubricating oil additives was evaluated by means of UMT-2 tribometer at room temperature. The wear scars were examined with SEM and electron-probe micro-analyzer (EPMA). The results show that the anti-wear properties were improved and the friction coefficient was greatly decreased with the simultaneous addition of WS2 particles and ZDDP, and the largest reduction of friction coefficient was 47.2% compared with that in base oil. Moreover, the presence of ZDDP additive in the lubricant further enhances the friction-reduction and anti-wear effect of microscale/nanoscale WS2. This confirms that there is a synergistic effect between WS2 particles and ZDDP.


Friction ◽  
2020 ◽  
Author(s):  
Lincong Liu ◽  
Ming Zhou ◽  
Youtang Mo ◽  
Pengpeng Bai ◽  
Qilin Wei ◽  
...  

AbstractWe prepared a graphene/ionic liquid (G/IL) composite material by the hybridization of G and an IL for use as a lubricating oil additive. The friction coefficient and wear volume of a base oil containing 0.04 wt% of the G/IL composite was reduced by 45% and 90%, respectively. Furthermore, the base oil containing the G/IL composite exhibited better lubricating properties than the base oil containing G, IL, or a mixture of IL and G at the same mass fraction. A synergistic lubrication mechanism was also revealed. The G/IL composite was adsorbed and deposited on the wear surface, forming a more ordered protective film and a unique tribochemical reaction film during rubbing. Therefore, the G/IL composite exhibited the synergistic lubricating effects of G and IL, which significantly improved the lubricating performance of the base oil. This study also suggested a way to limit the out-of-plane puckering of G at the macroscale.


2017 ◽  
Vol 737 ◽  
pp. 184-191 ◽  
Author(s):  
Vu Nguyen Anh Le ◽  
Jau Wen Lin

This study investigates the influence of aluminum nanoparticles, oleic acid as dispersants, and rotational speed on the tribological behavior of a lubricant. The experiments are performed on a pin-on-disc tribotester at a normal force of 90 N and a rotational speed ranging from 150 rpm to 600 rpm. Both the aluminum nanoparticles and oleic acid are in concentrations from 0 to 1 wt% and are added to the SN150 base oil. The results revealed that the addition of aluminum nanoparticles and oleic acid to the base oil will lead to significant friction reduction and anti-wear properties. The coefficient of friction (COF) and wear rate decreased after an increase in the concentration of nanoparticles and oleic acid, and an optimum concentration level was exhibited in which both COF and wear-rate were lowest. The viscosity and temperature of the lubricant are also evaluated. Further, the topography of discs after performance of sliding test have been analyzed through the use of an optical microscope, a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS) in order to interpret the mechanisms of nanoparticle action used to prevent friction and subsequent wear.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2273
Author(s):  
Shuzhe Guan ◽  
Xuanchi Liu ◽  
Yagang Zhang ◽  
Yumei Liu ◽  
Lulu Wang ◽  
...  

The application of trimellitate (TMT) in the lubricating oil industry was seriously restricted because of its low viscosity index. In the work reported here, polycaprolactone (PCL) soft chain was embedded into the structure of TMT in order to improve the viscosity index. Characterization of the polymers was done by proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TG). Results supported our design and were consistent with the target product structure. Performance of the prepared materials was evaluated by standard ASTM methods. Noticeably, the viscosity index of the modified TMT increased from 8 to above 100, which greatly improved its viscosity-temperature performance. As the initiator, tetrabutyl titanate (TBT) can not only complete the ring-opening polymerization of caprolactam (ε-CL) at room temperature, but also generate nano-TiO2 by-products with excellent anti-wear properties during the synthesis. Characterization of the nano-TiO2 was done by scanning electron microscopy (SEM), FT-IR, TG and X-ray diffractometry (XRD). The friction and wear tests were conducted on a four-ball friction tester and the surface morphologies of worn surfaces were investigated by SEM. The experimental results clearly showed that the modified TMT showed better viscosity index and thermal stability as compared to the unmodified one. The modified nano-TMT base oil features excellent lubricant performance with good viscosity–temperature properties, thermal stability and anti-wear properties.


2019 ◽  
Vol 71 (4) ◽  
pp. 578-585
Author(s):  
Jianhua Ding ◽  
Jianhua Fang ◽  
Boshui Chen ◽  
Nan Zhang ◽  
Xingyu Fan ◽  
...  

Purpose This paper aims to understand the influences of tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester on biodegradability and tribological performances of mineral lubricating oil. Design/methodology/approach Tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester were prepared and characterized by Fourier transform infrared spectrometer. The biodegradability and tribological properties of neat oil and its formulations were studied on a tester for fast evaluating biodegradability of lubricants and a four-ball tester, respectively. The worn surfaces were investigated by scanning electron microscope and X-ray photoelectron spectroscope. Findings Tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester both improved markedly the biodegradability, the anti-wear properties, friction-reducing properties and extreme pressure properties of base oil. The effect of oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester was better than tris (2-hydroxyethyl) isocyanurate oleate. The improvement of tribological performances was mainly ascribed to the formation of a complicated boundary lubrication film of tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester on the friction surfaces. Originality/value This paper has indicated that tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester effectively improve the biodegradability and tribological performances of mineral lubricating oil. Promoting biodegradation of mineral lubricant by additives is very significant for the development of petroleum-based biodegradable lubricants. These two additives not merely improve the tribological performances; more importantly, they improve the ecological performances.


2021 ◽  
pp. 089270572110079
Author(s):  
Victor E Ogbonna ◽  
Patricia I Popoola ◽  
Olawale M Popoola ◽  
Samson O Adeosun

In recent years, advancements on improving the mechanical and tribological properties of polyimide nanocomposites have remarkably increased, owing to the fact that polyimide nanocomposites exhibits lightweight, high strength, thermal stability as well as anti-wear and solvent resistance. The polyimide nanocomposites are described as material of polyimide matrix reinforced with certain volume or weight percent concentration of nanofillers. Researchers have demonstrated the importance of thermoplastic polyimide nanocomposites in mechanical, thermal, and tribological applications. However, the nanocomposites are reportedly facing interfacial adhesion issues and surface properties degradation, which have affected their mechanical, friction, and abrasive wear resistance for tribological applications. Although, much advancements on improving the mechanical, thermal, and wear resistance properties of polyimide nanocomposites has been reported. However, this review summarizes the effects of nanofillers, such as carbon nanotubes (CNTs), graphene (GN), graphene oxide (GO), boron nitride (BN), molybdenum disulfide (MoS2), silica (SiO2), titania (TiO2), alumina (Al2O3), carbon fibres (CF), aramid fibre (AF), glass fibre (GF), zinc dioxide (ZnO2), zirconium dioxide (ZrO2), silicon nitride (Si2N4), and carbon nitride (C3N4) on the mechanical, thermal, and wear properties of polyimide nanocomposites for tribological applications. The authors concluded the review study with advancement, challenges and suggestions for future improvement of polyimide nanocomposites as friction component material. Thus, the review offers an insight into the improvement and selection of polyimide nanocomposites material for mechanical, thermal, and tribological applications. More so, the review will also give away for further research.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


Sign in / Sign up

Export Citation Format

Share Document