scholarly journals Cross-Sectional Dimension Dependence of Electroosmotic Flow in Fractal Treelike Rectangular Microchannel Network

Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 266 ◽  
Author(s):  
Dalei Jing ◽  
Xuekuan Zhan

The present work theoretically and numerically studies the electroosmotic flow (EOF) within a fractal treelike rectangular microchannel network with uniform channel height. To obtain minimum EOF fluidic resistance, the microchannel cross-sectional dimensions of the fractal network are optimized. It is found that the cross-sectional dimension dependence of EOF fluidic resistance within a symmetric fractal network is only dependent on the channel width when the total channel volume is constant, and the optimal microchannel widths to reach the minimum EOF fluidic resistance satisfy the scaling law of κ = N−1 (where κ is the width ratio of the rectangular channels at two successive branching levels, N is the branching number); however, for the symmetric fractal network with constant total surface area, the optimal cross-sectional dimensions should simultaneously satisfy κ = N−1 and H = S 4 l 0 1 − γ N 1 − ( γ N ) m + 1 (where H is the channel height, S is the total channel surface area, l0 is the channel length at the original branching level, γ is the channel length ratio at two successive branching levels and m is the total branching level) to obtain the minimum EOF fluidic resistance. The optimal scaling laws established in present work can be used for the optimization design of the fractal rectangular microchannel network for EOF to reach maximum transport efficiency.

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 440
Author(s):  
Masaki Toshimitsu ◽  
Yukihiro Yonemoto ◽  
Akimaro Kawahara

The flow characteristics of the single-phase liquid and the gas–liquid two-phase flows including the Newtonian and non-Newtonian liquids were experimentally investigated in a horizontal rectangular micro-channel with a sudden contraction—specifically the pressure change across the contraction. The rectangular cross-sectional dimension has Wu × Hu (width × height) = 0.99 × 0.50 mm2 on the upstream side of the contraction and Wd × Hd = 0.49 × 0.50 mm2 on the downstream side. The resulting contraction ratio, σA (=Wd/Wu), was 0.5. Air was used as the test gas (in the case of the gas–liquid two-phase flow experiment), distilled water and three kinds of aqueous solution, i.e., glycerin 25 wt%, xanthangum 0.1 wt% and polyacrylamide 0.11 wt% were used as the test liquid. The pressure distribution in the flow direction upstream and downstream of the channel was measured. The pressure change and loss at the sudden contraction were determined from the pressure distribution. In addition, the pressure change data were compared with the calculation by several correlations proposed by various researchers as well as a newly developed correlation in this study. From the comparisons, it was found that calculations by the newly developed correlations agreed well with the measured values within the error of 30%.


Author(s):  
Thomas A. Zangle ◽  
Ali Mani ◽  
Juan G. Santiago

Recent advances in fabrication methods allow us to study and leverage the unique flow regimes offered by nano-scale fluidic channels, [1–3] and recent work suggests that the physics of microchannel/nanochannel interfaces present opportunities for novel methods of sample preconcentration and analysis. [4–6] In nanochannels, channel height is of the same order of the electric double layer (EDL) thickness, leading to a decreased electrical resistance relative to the fluidic resistance of the channel. More importantly, analyte molecules undergoing electrophoresis spend a significant amount of time within EDLs. This has a profound effect on the interfaces between micro- and nanochannels. In particular, for negatively charged walls and a nanochannel in series with two microchannels, the concentration of ions (of both signs) increases on the cathodic side of the nanochannel and decreases on the anodic side. This phenomenon is called concentration polarization (CP) or the exclusion enrichment effect. [4, 5] There is a dearth of basic studies of these phenomena and the coupling of electroosmotic flow with concentration polarization. We present experimental validation of a computational model which predicts the development of concentration polarization. Furthermore, we will show preliminary results demonstrating focusing and separation of analyte anions in the cathodic side microchannel. This focusing is due to a balance of advection and electrophoretic migration. Anionic analytes focus and separate according to electrophoretic mobility.


2021 ◽  
Vol 11 (12) ◽  
pp. 5597
Author(s):  
Hussein A. Z. AL-bonsrulah ◽  
Mohammed J. Alshukri ◽  
Ammar I. Alsabery ◽  
Ishak Hashim

Proton exchange membrane fuel cell (PEM-FC) aggregation pressure causes extensive strains in cell segments. The compression of each segment takes place through the cell modeling method. In addition, a very heterogeneous compressive load is produced because of the recurrent channel rib design of the dipole plates, so that while high strains are provided below the rib, the domain continues in its initial uncompressed case under the ducts approximate to it. This leads to significant spatial variations in thermal and electrical connections and contact resistances (both in rib–GDL and membrane–GDL interfaces). Variations in heat, charge, and mass transfer rates within the GDL can affect the performance of the fuel cell (FC) and its lifetime. In this paper, two scenarios are considered to verify the performance and lifetime of the PEM-FC using different innovative channel geometries. The first scenario is conducted by adopting a constant channel height (H = 1 mm) for all the differently shaped channels studied. In contrast, the second scenario is conducted by taking a constant channel cross-sectional area (A = 1 mm2) for all the studied channels. Therefore, a computational fluid dynamics model (CFD) for a PEM fuel cell is formed through the assembly of FC to simulate the pressure variations inside it. The simulation results showed that a triangular cross-section channel provided the uniformity of the pressure distribution, with lower deformations and lower mechanical stresses. The analysis helped gain insights into the physical mechanisms that lead to the FC’s durability and identify important parameters under different conditions. The model shows that it can assume the intracellular pressure configuration toward durability and appearance containing limited experimental data. The results also proved that the better cell voltage occurs in the case of the rectangular channel cross-section, and therefore, higher power from the FC, although its durability is much lower compared to the durability of the triangular channel. The results also showed that the rectangular channel cross-section gave higher cell voltages, and therefore, higher power (0.63 W) from the fuel cell, although its durability is much lower compared to the durability of the triangular channel. Therefore, the triangular channel gives better performance compared to other innovative channels.


2014 ◽  
Vol 638-640 ◽  
pp. 1397-1401
Author(s):  
Kai Xiang ◽  
Guo Hui Wang ◽  
Yan Chong Pan

This paper presents a review of research progress in fire performance of concrete-filled steel tubular (CFST) columns. Experimental results of CFST columns in fire are reviewed with influence parameters, such as heights, cross-sectional dimension, section types, concrete types, concrete strengths, load ratio, load eccentricity, fire exposed sides and so on. Some conclusions of CFST columns under fire conditions are summarized. Deficiencies in the fire performance experiments of CFST columns are identified, which provide the focus for future research in the field.


1992 ◽  
Vol 7 (8) ◽  
pp. 2225-2229 ◽  
Author(s):  
Z.G. Li ◽  
P.F. Carcia ◽  
P.C. Donohue

The microstructure of LaB6-base thick film resistors was investigated by cross-sectional transmission electron microscopy. The specimens were prepared by a technique that polished them to a thin wedge, thus avoiding ion-milling and permitting imaging over a distance of tens of microns. The resistor microstructure contained a finely divided electrically conductive phase of TaB2 and nonconducting crystals of CaTa4O11, formed during high temperature processing of glass and LaB6 ingredients of the thick film ink. Using higher surface area ingredients virtually suppressed the formation of CaTa4O11 crystals, and the microstructure became more uniform. Resistors made with higher surface area intermediates also had better voltage withstanding properties.


Author(s):  
Brian J. Daniels ◽  
James A. Liburdy ◽  
Deborah V. Pence

Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical simulations for identical flow conditions. The fractal-like branching channel network had channel length and width ratios between adjacent branching levels of 0.7071, a total flow length of 18 mm, a channel height of 150 μm and a terminal channel width of 100 μm. The channels were DRIE etched into a silicon disk and pyrex was anodically bonded to the silicon to form the channel top and allowed visualization of the flow within the channels. The water flowed from the center of the disk where the inlet was laser cut through the silicon to the periphery of the disc. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 °C. Pressure drop across the channel as well as void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The pressure drop results agree well with the numerical predictions. The measured void fraction results followed the same trends as the numerical results.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1470
Author(s):  
Omid Rouhi ◽  
Sajad Razavi Bazaz ◽  
Hamid Niazmand ◽  
Fateme Mirakhorli ◽  
Sima Mas-hafi ◽  
...  

Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer. Here, mixing performance in a spiral micromixer with different channel cross-sections is evaluated experimentally and numerically in the Re range of 0.001 to 50. The accuracy of the 3D-finite element model was first verified at different flow rates by tracking the mixing index across the loops, which were directly proportional to the spiral radius and were hence also proportional to the Dean flow. It is shown that higher flow rates induce stronger vortices compared to lower flow rates; thus, fewer loops are required for efficient mixing. The numerical study revealed that a large-angle outward trapezoidal cross-section provides the highest mixing performance, reaching efficiencies of up to 95%. Moreover, the velocity/vorticity along the channel length was analyzed and discussed to evaluate channel mixing performance. A relatively low pressure drop (<130 kPa) makes these passive spiral micromixers ideal candidates for various lab-on-chip applications.


2018 ◽  
Vol 21 (3) ◽  
pp. 134-137
Author(s):  
Yong Cheol Jun ◽  
Young Lae Moon ◽  
Moustafa I Elsayed ◽  
Jae Hwan Lim ◽  
Dong Hyuk Cha

BACKGROUND: In a previous study undertaken to quantify capsular volume in rotator cuff interval or axillary pouch, significant differences were found between controls and patients with instability. However, the results obtained were derived from two-dimensional cross sectional areas. In our study, we sought correlation between three-dimensional (3D) capsular volumes, as measured by magnetic resonance arthrography (MRA), and multidirectional instability (MDI) of the shoulder.METHODS: The MRAs of 21 patients with MDI of the shoulder and 16 control cases with no instability were retrospectively reviewed. Capsular areas determined by MRA were translated into 3D volumes using 3D software Mimics ver. 16 (Materilise, Leuven, Belgium), and glenoid surface area was measured in axial and coronal MRA views. Then, the ratio between capsular volume and glenoid surface area was calculated, and evaluated with control group.RESULTS: The ratio between 3D capsular volume and glenoid surface area was significantly increased in the MDI group (3.59 ± 0.83 cm³/cm²) compared to the control group (2.53 ± 0.62 cm³/cm²) (p < 0.01).CONCLUSIONS: From these results, we could support that capsular volume enlargement play an important role in MDI of the shoulder using volume measurement.


Author(s):  
Tong-Miin Liou ◽  
Shih-Hui Chen

Computations and measurements of time mean velocities, total fluctuation intensities, and Reynolds stresses are presented for spatially periodic flows past an array of bluff bodies aligned along the channel axis. The Reynolds number based on the channel hydraulic diameter and cross-sectional bulk mean velocity, the pitch to rib-height ratio, and the rib-height to channel-height ratio were 2 × 104, 10, and 0.133, respectively. The unsteady phase-averaged Navier-Stokes equations were solved using a Reynolds stress model with wall function and wall-related pressure strain treatment to reveal the feature of examined unsteady vortex shedding flow. Laser Doppler velocimetry measurements were performed to measure the velocity filed. Code verifications were performed through comparisons with others’ measured developing single-rib flow and our measured fully developed rib-array flow. The computed results and measured data are found in reasonable agreement, which justifies the turbulence model adopted. The calculated phase-averaged flow field clearly displays the vortex shedding behind the rib and is characterized in terms of shedding Strouhal number, vortex trajectory, vortex celerity, and vortex travelling distance in a phase cycle. Furthermore, the difference between the computed developing single-rib flow and fully developed rib-array flow is addressed.


Sign in / Sign up

Export Citation Format

Share Document